I am trying to interpolate sparse data over a meshgrid, but am observing some rather odd behavior. The white dots are precisely where I have values, and I am relying on the linear interpolation algorithm to fill in the other grids where possible. I recognize that this type of interpolation is not perfect due to the obvious lack of data, but how come some of the points where I have data fall outside the meshgrid that I am interpolating over? Is this a common phenomenon? This doesn't change even if I make the grid coarser.
I would appreciate some insight into why this happens, (perhaps how the linear interpolation works), or if there are any ways to fix this. See the red circles in the picture below for example:
Data points provided for interpolation falling outside the meshgrid that is interpolated over
The following is some code on the interpolation that generated the gridded data.
#mesh grid
xg = np.linspace(-130, -60, num=70)
yg = np.linspace(20,50,num=30)
Xg,Yg = np.meshgrid(xg,yg)
zg1 = griddata(points1, df2['tempratio'], (Xg, Yg), method = 'linear')
from mpl_toolkits.basemap import Basemap
lon_0 = xg.mean()
lat_0 = yg.mean()
m = Basemap(width=5000000, height=3500000,
resolution='l', projection='stere',\
lat_ts=40, lat_0=lat_0, lon_0=lon_0)
xm, ym = m(Xg, Yg)
cs = m.pcolormesh(xm,ym,zg1,shading='flat',cmap=plt.cm.Reds)