I am implementing a faster RCNN network on pytorch. I have followed the next tutorial.
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
There are images in which I have more than 100 objects to classify. However, with this tutorial I can only detect a maximum of 100 objects, since the parameter "maxdets" = 100.
Is there a way to change this value to adapt it to my project?
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.235
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.655
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.105
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.238
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.006
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.066
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.331
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.331
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
If only change next param, it would be the problem solved?
cocoeval.Params.setDetParams.maxDets = [1, 10, 100]
Thank you!