Let's consider a simple dataset:
X_train = np.ones((2, 5, 4))
To implement a simple LSTM model and run the dataset through it (without training), I can do the following:
lstm_model = tf.keras.models.Sequential()
lstm_model.add(tf.keras.layers.LSTM(units=16, return_sequences=False, input_shape=X_train.shape[-2:]))
print(lstm_model.predict(X_train))
This yields the same result as:
lstm_model = tf.keras.models.Sequential()
lstm_model.add(tf.keras.layers.RNN(tf.keras.layers.LSTMCell(units=16, input_shape=X_train.shape[-2:])))
print(lstm_model.predict(X_train))
However, I do not understand how to generate the same result using the older version:
g = tf.Graph()
with g.as_default():
X = tf.compat.v1.placeholder(tf.float32, shape=[None, 5, 4])
cell = tf.compat.v1.nn.rnn_cell.LSTMCell(16)
outputs, state = tf.compat.v1.nn.dynamic_rnn(cell, X, dtype=tf.float32)
with tf.compat.v1.Session(graph=g) as sess:
print(sess.run(state.h, feed_dict={X: X_train}))
Could you show how to modify the last block of code to obtain the same results as in the previous two?