The nice thing about twos complement is that addition, subtraction, and multiplication of signed operands are exactly the same operations, bit-for-bit, as the ones for unsigned operands, so the computer doesn't need to care whether you think of them as signed or not.
In terms of modular arithmetic as well, the operations mean exactly the same thing. With 4 bit words, when you say:
r = a * b;
You get r = a * b mod 16.
The only difference between signed and unsigned is the value we assign in our heads to the residues mod 16. If we think of the words as unsigned then we have values 0-15. But 15 = -1 mod 16, 14 = -2 mod 16, etc, and if we think of the words as signed, then we just think of the values -8 to 7 instead of 0 to 15.
The reminder operator %
that you get in C, java, etc, is annoying in the way it handles negative numbers. If you wanted to express your 4-bit multiply using that operator in larger words, then you could say:
a * b = ( (a * b % 16) + 24 ) % 16 - 8
If the remainder operator worked "properly" so that -1 % 16 == 15, then you could write a * b = (a * b + 8) % 16 - 8