Right now I have the following, very slow but working code:
crossover_list = {}
for song_id in song_ids:
crossover_set = list(dance_occurrences.filter(
song_id=song_id).values_list('dance_name_id', flat=True).distinct())
crossover_list[song_id] = crossover_set
It returns a dictionary where a song ID is used as a dictionary key, and a list of integer values is used as the value. The first three keys are the following:
crossover_list = {
1:[38,37],
2:[38],
....
}
Does anyone here know of a succinct way to wrap this up into a single query? The data exists in a single table that has three columns where each song_id can be associated with multiple dance_ids.
song_id | playlist_id | dance_id
1 1 38
1 2 37
2 1 38
Ideally, what I am trying to figure out how to return is:
<QuerySet[{'song_id':1, [{'dance_id':38, 'dance_id':37}]}, {'song_id':2, [{'dance_id':38}]}]>
Any ideas or help is appreciated.
Edit: As requested, here are the models in question:
# This model helps us do analysis on music/dance crossover density, song popularity within-genre,
# playlist viability within-genre (based on song occurrence counts per song within each playlist), etc.
class SongOccurrences(models.Model):
song = models.ForeignKey(
'Songs',
on_delete=models.CASCADE,
)
playlist = models.ForeignKey(
'Playlists',
on_delete=models.CASCADE,
)
dance_name = models.ForeignKey(
'DanceMasterTable',
on_delete=models.CASCADE,
)
class Meta:
constraints = [
models.UniqueConstraint(fields=['song', 'playlist'], name='unique occurrence')
]
# This model contains relevant data from Spotify about each playlist
class Playlists(models.Model):
spotify_playlist_uri = models.CharField(max_length=200, unique=True)
spotify_playlist_owner = models.CharField(max_length=200)
spotify_playlist_name = models.CharField(max_length=200)
current_song_count = models.IntegerField()
previous_song_count = models.IntegerField()
dance_name = models.ForeignKey(
'DanceMasterTable',
on_delete=models.CASCADE,
)
# This model contains all relavent data from Spotify about each song
class Songs(models.Model):
title = models.CharField(max_length=200)
first_artist = models.CharField(max_length=200)
all_artists = models.CharField(max_length=200)
album = models.CharField(max_length=200)
release_date = models.DateField('Release Date', blank=True)
genres = models.CharField(max_length=1000, blank=True)
popularity = models.FloatField(blank=True) # This value changes often
explicit = models.BooleanField(blank=True)
uri = models.CharField(max_length=200, unique=True)
tempo = models.FloatField(blank=True)
time_signature = models.IntegerField()
energy = models.FloatField(blank=True)
danceability = models.FloatField(blank=True)
duration_ms = models.IntegerField()
tonic = models.IntegerField(blank=True)
mode = models.IntegerField(blank=True)
acousticness = models.FloatField(blank=True)
instrumentalness = models.FloatField(blank=True)
liveness = models.FloatField(blank=True)
loudness = models.FloatField(blank=True)
speechiness = models.FloatField(blank=True)
valence = models.FloatField(blank=True)
class Meta:
constraints = [
models.UniqueConstraint(fields=['title', 'first_artist', 'all_artists'], name='unique song')
]
# This model contains the (static) master list of partner dances to be analyzed.
class DanceMasterTable(models.Model):
dance_name = models.CharField(max_length=200, unique=True)