As context, I'm working with building a topographic program which needs relatively extreme detail. I do not expect the files to be small, and they do not formally need to be viewed on a monitor, they just need to have very high resolution.
I know that most image formats are limited to 8 bpp, on account of the standard limits on both monitors (at a reasonable price) and on human perception. However, 2⁸ is just 256 possible values, which induces plateauing artifacts in a reconstructed displacement. 2¹⁶ may be close enough at 65,536 possible values, which I have achieved.
I'm using FreeImage and DLang to construct the data, currently on a Linux Mint machine.
However, when I went on to 2³², software support seemed to fade on me. I tried a TIFF of this form and nothing seemed to be able to interpret it, either showing a completely (or mostly) transparent image (remembering that I didn't expect any monitor to really support 2³² shades of a channel) or complaining about being unable to decode the RGB data. I imagine that it's because it was assumed to be an RGB or RGBA image.
FreeImage is reasonably well documented for most purposes, but I'm now wondering, what is the highest-precision single-channel format I can export, and how would I do it? Can anyone provide an example? Am I really limited, in any typical and not-home-rolled image format, to 16-bit? I know that's high enough for, say, medical imaging, but I'm sure I'm not the first person to try to aim higher and we science-types can be pretty ambitious about our precision-level…
Did I make a glaring mistake in my code? Is there something else I should try instead for this kind of precision?
Here's my code.
The 16-bit TIFF that worked
void writeGrayscaleMonochromeBitmap(const double width, const double height) {
FIBITMAP *bitmap = FreeImage_AllocateT(FIT_UINT16, cast(int)width, cast(int)height);
for(int y = 0; y < height; y++) {
ubyte *scanline = FreeImage_GetScanLine(bitmap, y);
for(int x = 0; x < width; x++) {
ushort v = cast(ushort)((x * 0xFFFF)/width);
ubyte[2] bytes = nativeToLittleEndian(cast(ushort)(x/width * 0xFFFF));
scanline[x * ushort.sizeof + 0] = bytes[0];
scanline[x * ushort.sizeof + 1] = bytes[1];
}
}
FreeImage_Save(FIF_TIFF, bitmap, "test.tif", TIFF_DEFAULT);
FreeImage_Unload(bitmap);
}
The 32-bit TIFF that didn't really work
void writeGrayscaleMonochromeBitmap32(const double width, const double height) {
FIBITMAP *bitmap = FreeImage_AllocateT(FIT_UINT32, cast(int)width, cast(int)height);
writeln(width, ", ", height);
writeln("Width: ", FreeImage_GetWidth(bitmap));
for(int y = 0; y < height; y++) {
ubyte *scanline = FreeImage_GetScanLine(bitmap, y);
writeln(y, ": ", scanline);
for(int x = 0; x < width; x++) {
//writeln(x, " < ", width);
uint v = cast(uint)((x/width) * 0xFFFFFFFF);
writeln("V: ", v);
ubyte[4] bytes = nativeToLittleEndian(v);
scanline[x * uint.sizeof + 0] = bytes[0];
scanline[x * uint.sizeof + 1] = bytes[1];
scanline[x * uint.sizeof + 2] = bytes[2];
scanline[x * uint.sizeof + 3] = bytes[3];
}
}
FreeImage_Save(FIF_TIFF, bitmap, "test32.tif", TIFF_NONE);
FreeImage_Unload(bitmap);
}
Thanks for any pointers.