I just lerned python a couple of weeks ago and I´m currently having a problem with fitting data to a given function. I tried differnt methods to fit my data but I keep getting the error RuntimeWarning: invalid value, or sth similiar (like divided by zero). I defined the function I want to fit in the following python function:
def pval(x, A_0, n_0, E_0, a_troe, T_3, T_1, T_2,):#depending on the method 'p' insted of the parameters i.e: pval(x,p)
#A_0, n_0, E_0, a_troe, T_3, T_1, T_2 = p[0:7]
A_u = 14099393133.869781
n_u = 0.043936990336299386
E_u = 16281.619590689397
k_u = A_u * (x[:,0]**n_u) * numpy.exp(-E_u/x[:,0])
x_troe = ((A_0 * (x[:,0]**n_0) * numpy.exp(-E_0 / x[:, 0])) / k_u) * (x[:, 1] * 1.01325 * 10**(-1)) / (8.3141 * x[:, 0])
Fc = (1-a_troe) * numpy.exp(-x[:,0]/T_3) + a_troe * numpy.exp(-x[:,0]/T_1) + numpy.exp(-T_2/x[:,0])
O = numpy.log10(x_troe) - 0.4 - 0.67 * numpy.log10(Fc)
U = 0.75 - 1.27 * numpy.log10(Fc) - 0.14 * (numpy.log10(x_troe) - 0.4 - 0.67 * numpy.log10(Fc))
log_F = numpy.log10(Fc)/(1 + (O/U)**2)
f = numpy.log10(k_u) - numpy.log10(1+1/x_troe) + log_F
return f
As you can see I want to fit 7 parameter and the function has 2 independent variables. An excerpt of my data, with which none of the methods I tried works, is given here:
x= [[1.0e+03 1.0e-02]
[1.0e+03 1.0e-01]
[1.0e+03 1.0e+00]
[1.0e+03 1.0e+01]
[1.0e+03 1.0e+02]
[1.1e+03 1.0e-02]
[1.1e+03 1.0e-01]
[1.1e+03 1.0e+00]
[1.1e+03 1.0e+01]
[1.1e+03 1.0e+02]
[1.2e+03 1.0e-01]
[1.2e+03 1.0e+00]
[1.2e+03 1.0e+01]
[1.2e+03 1.0e+02]
[1.3e+03 1.0e+00]
[1.3e+03 1.0e+01]
[1.3e+03 1.0e+02]
[1.4e+03 1.0e+00]
[1.4e+03 1.0e+01]
[1.4e+03 1.0e+02]
[1.5e+03 1.0e+01]
[1.5e+03 1.0e+02]
[1.6e+03 1.0e+01]
[1.6e+03 1.0e+02]
[1.7e+03 1.0e+02]
[1.8e+03 1.0e+02]
[1.9e+03 1.0e+02]
[2.0e+03 1.0e+02]]
y = [2.89894501 2.99443594 3.11048533 3.18421145 3.20302744 3.15204054
3.37720969 3.62462651 3.78744276 3.83868541 3.64709041 4.00417085
4.26080811 4.36152197 4.28960902 4.63156552 4.79327409 4.50830342
4.9238101 5.15010835 5.1568065 5.44522578 5.34414656 5.68986891
5.89350044 6.06378356 6.20646696 6.32558954]
The first solution I tried was the leastsq() funtion:
import numpy
from scipy import *
from scipy.optimize import leastsq
def residuals(p, y, x): # in this case pval defined as pval(x,p)
err = y - pval(x, p)
return err
startpars = numpy.array([1.88e+13, -1.03, 11980, 0.76, 1.0e+10, 1.74, 9.33e+09], dtype=numpy.float64)
plsq = leastsq(residuals, startpars, args=(y, x), maxfev=2000)
print(plsq)
output:
RuntimeWarning: invalid value encountered in log10
I tried several startparameters next method: curve_fit
import numpy
from scipy import *
from scipy.optimize import curve_fit
print(curve_fit(pval, x, y,))
which returns the same error message as the prevous method. I tried to define startparameter and set bounds but that didn't work next method:lmfit
import numpy
from lmfit import Model
startpars = numpy.array([1.88e+13, -1.03, 11980, 0.76, 1.0e+10, 1.74, 9.33e+09], dtype=numpy.float64)
lmfit_model = Model(pval)
lmfit_result = lmfit_model.fit(y, x=x, A_0 = startpars[0], n_0= startpars[1], E_0= startpars[2], a_troe= startpars[3], T_3= startpars[4], T_1= startpars[5], T_2= startpars[6])
lmfit_Rsquared = 1 - lmfit_result.residual.var() / numpy.var(y)
print('Fit R-squared:', lmfit_Rsquared, '\n')
print(lmfit_result.fit_report())
output:
ValueError: The model function generated NaN values and the fit aborted! Please check your model function and/or set boundaries on parameters where applicable. In cases like this, using "nan_policy='omit'" will probably not work.
I also tried another solution which I found online. There the Levenberg–Marquardt algorithm was used, but its quiet a long code and I think my question is already long enough. But I can post this solution as well if needed.
I printed out some values while the optimzation was running and some values indeed become inf or -inf, but as written before setting bounds diddn´t work.
I hope anybody of you has an idea. Thank in advance. I hoe my question is formulated clearly in case you need more info i gladly provide that