@dataclass
class Car:
brand: str
color: str
How can I get a dict that ignore None values? Something like:
>>> car = Car(brand="Audi", color=None)
>>> asdict(car, some_option_to_ignore_none_values=True)
> {'brand': 'Audi'}
@dataclass
class Car:
brand: str
color: str
How can I get a dict that ignore None values? Something like:
>>> car = Car(brand="Audi", color=None)
>>> asdict(car, some_option_to_ignore_none_values=True)
> {'brand': 'Audi'}
All answers are good but to me they are too verbose. Here's a one-liner:
# dc is dataclass
# d is dict out
d = asdict(dc, dict_factory=lambda x: {k: v for (k, v) in x if v is not None})
Show case:
from typing import Optional, Tuple
from dataclasses import asdict, dataclass
@dataclass
class Space:
size: Optional[int] = None
dtype: Optional[str] = None
shape: Optional[Tuple[int]] = None
s1 = Space(size=2)
s1_dict = asdict(s1, dict_factory=lambda x: {k: v for (k, v) in x if v is not None})
print(s1_dict)
# {"size": 2}
s2 = Space(dtype='int', shape=(2, 5))
s2_dict = asdict(s2, dict_factory=lambda x: {k: v for (k, v) in x if v is not None})
print(s2_dict)
# {"dtype": "int", "shape": (2, 5)}
Old topic but I hope this can help: The best way I've found so far to do this is to use the metadata/config exclude option:
from dataclasses import dataclass, field
from typing import Optional, Union
from dataclasses_json import LetterCase, dataclass_json, config
import pprint
def ExcludeIfNone(value):
"""Do not include field for None values"""
return value is None
@dataclass_json(letter_case=LetterCase.CAMEL)
@dataclass
class Op:
required: str
optional: Optional[int] = field(metadata=config(exclude=ExcludeIfNone), default=None)
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(clearsale.Op(required="test").to_dict())
pp.pprint(clearsale.Op(required="test", optional=10).to_dict())
Output:
{'required': 'test'}
{'optional': 10, 'required': 'test'}
Another option is to write a dict_factory that will reject adding None values and pass it to asdict
method.
checkout the code source here https://github.com/python/cpython/blob/master/Lib/dataclasses.py
I needed something recursive so I borrowed from the dataclasses source code that Ramtin pointed to and added a couple of conditionals:
from copy import deepcopy
from dataclasses import fields
def dict_minus_none_values(obj, dict_factory=dict):
"""Based on dataclasses._asdict_inner"""
if hasattr(type(obj), "__dataclass_fields__"):
result = []
for field in fields(obj):
value = dict_minus_none_values(getattr(obj, field.name), dict_factory)
if value is not None:
result.append((field.name, value))
return dict_factory(result)
if isinstance(obj, tuple) and hasattr(obj, "_fields"):
return type(obj)(*[dict_minus_none_values(v, dict_factory) for v in obj])
if isinstance(obj, (list, tuple)):
return type(obj)(dict_minus_none_values(v, dict_factory) for v in obj)
if isinstance(obj, dict):
return type(obj)(
(
dict_minus_none_values(k, dict_factory),
dict_minus_none_values(v, dict_factory),
)
for k, v in obj.items()
if v is not None
)
return deepcopy(obj)
Using simple class
class human:
def __init__(self, choice = False, **kwargs):
self.details = [kwargs if choice is False else self._filterr(kwargs)][0]
def _filterr(self, param):
filtered = {k:v for k,v in param.items() if v is not None}
return filtered
jason = human(choice = True ,name = "jason", age = None, height = None, gender = None, programmer = True)
print(jason.details)
{'name': 'jason', 'programmer': True}
[Program finished]
Edit 1:
from dataclasses import dataclass, asdict
@dataclass
class Human:
name: str
age: int = None
height: float = None
gender: str = None
programmer: bool = False
jason = Human(name="jason", programmer=True)
jason_details = asdict(jason)
print(jason_details)
By using the asdict() function from the dataclasses module, you can directly convert the instance of the data class to a dictionary, excluding any fields with None values.
class IgnoreNoneValues(dict):
def __setitem__(self, k, v):
if v is not None:
super().__setitem__(k, v)
asdict(<some dataclass object>, dict_factory=IgnoreNoneValues)