Paralleling with dask is slower than sequential coding.
I have a nested for loops which I am trying to parallel on a local cluster but can't find the right way.
I want to parallel the inside loop.
I have 2 big numpy matrices which I am trying to iterate over and perform a mathematical calculation on a subset of the matrices. dimensions:
data_mat.shape = (38, 243863)
indicies_mat.shape (243863, 27)
idxX.shape = (19,)
idxY.shape = (19,)
seq_code:
start = datetime.datetime.now()
for i in range(num+1):
if i == 0:
labels = np.array(true_labels)
else:
labels = label_mat[i]
idxX = list(np.where(labels == 1))
idxY = list(np.where(labels == 2))
ansColumn = []
for j in range(indices.shape[0]):
list_of_indices = [[i] for i in indices_slice]
dataX = (data_mat[idxX, list_of_indices]).T
dataY = (data_mat[idxY, list_of_indices]).T
ansColumn.append(calc_func(dataX, dataY))
if i == 0:
ansMat = ansColumn
else:
ansMat = np.c_[ansMat, ansColumn]
end = datetime.datetime.now()
print(end - start)
parallel code:
start = datetime.datetime.now()
cluster = LocalCluster(n_workers=4, processes=False)
client = Client(cluster)
for i in range(num+1):
if i == 0:
labels = np.array(true_labels)
else:
labels = label_mat[i]
idxX = list(np.where(labels == 1))
idxY = list(np.where(labels == 2))
[big_future] = client.scatter([data_mat], broadcast=True)
[idx_b] = client.scatter([idxX], broadcast=True)
[idy_b] = client.scatter([idxY], broadcast=True)
futures = [client.submit(prep_calc_func, idx_b, idy_b, indices[j, :], big_future) for j in range(indices.shape[0])]
ansColumn = []
for fut in dask.distributed.client.as_completed(futures):
ansColumn.append(fut.result())
if i == 0:
ansMat = ansColumn
else:
ansMat = np.c_[ansMat, ansColumn]
end = datetime.datetime.now()
print(end - start)
helper function:
def = prep_calc_func(idxX, idxY, subset_of_indices, data_mat):
list_of_indices = [[i] for i in indices_slice]
dataX = (data_mat[idxX, subset_of_indices]).T
dataY = (data_mat[idxY, subset_of_indices]).T
ret_val = calc_func(dataX, dataY)
return ret_val
local machine: MacBook Pro (Retina, 13-inch, Mid 2014) Processor: 2.6 GHz Intel Core i5
hw.physicalcpu: 2 hw.logicalcpu: 4
Memory: 8 GB 1600 MHz DDR3
when I execute the seq code it takes 01:52 min to complete (less than 2 minutes)
but when I try the parallel code it takes a lot more than 15 min. (no matter which method I use: compute, result and client.submit or dask delayed)
(I prefer to use the dask distributed package because the next phase is maybe using remote clusters too.)
Any idea what am I doing wrong?