Conceptually, the general way is to use Map. In your case, the code would be
In[13]:= lst = {{3, 1}, {5, 4}}
Out[13]= {{3, 1}, {5, 4}}
In[14]:= thr = 2
Out[14]= 2
In[15]:= Map[{If[#[[2]] < thr, 0, #[[1]]], #[[2]]} &, lst]
Out[15]= {{0, 1}, {5, 4}}
The #
symbol here stands for the function argument. You can read more on pure functions here. Double square brackets stand for the Part extraction. You can make it a bit more concise by using Apply on level 1, which is abbreviated by @@@
:
In[27]:= {If[#2 < thr, 0, #], #2} & @@@ lst
Out[27]= {{0, 1}, {5, 4}}
Note however that the first method is several times faster for large numerical lists. An even faster, but somewhat more obscure method is this:
In[29]:= Transpose[{#[[All, 1]]*UnitStep[#[[All, 2]] - thr], #[[All, 2]]}] &[lst]
Out[29]= {{0, 1}, {5, 4}}
It is faster because it uses very optimized vectorized operations which apply to all sub-lists at once. Finally, if you want the ultimate performance, this procedural compiled to C version will be another factor of 2 faster:
fn = Compile[{{lst, _Integer, 2}, {threshold, _Real}},
Module[{copy = lst, i = 1},
For[i = 1, i <= Length[lst], i++,
If[copy[[i, 2]] < threshold, copy[[i, 1]] = 0]];
copy], CompilationTarget -> "C", RuntimeOptions -> "Speed"]
You use it as
In[32]:= fn[lst, 2]
Out[32]= {{0, 1}, {5, 4}}
For this last one, you need a C compiler installed on your machine.