The ARM architechures gives several different address modes.
From ARM946E-S product overview and many other sources:
Load and store instructions have three primary addressing modes
- offset
- pre-indexed
- post-indexed.
They are formed by adding or subtracting an immediate or register-based offset to or from a base register. Register-based offsets can also be scaled with shift operations. Pre-indexed and post-indexed addressing modes update the base register with the base plus offset calculation. As the PC is a general purpose register, a 32‑bit value can be loaded directly into the PC to perform a jump to any address in the 4GB memory space.
As well, they support write back or updating of the register, hence the reason for pre-indexed and post-indexed. Post-index doesn't make much sense without write back.
Now to your issue, I believe that you want to write the values 0-9 to an array of ten words (length four bytes). Assuming this, you can use indexing and update the value via add
. This leads to,
mov r0, #0 ; start value
ldr r1, =array1 ; array pointer
writeloop:
cmp r0, #10
beq writedone
str r0, [r1, r0, lsl #2] ; index with r1 base by r0 scaled by *4
add r0, r0, #1
b writeloop
writedone:
; code to jump somewhere else and not execute data.
.balign 4
array1: skip 40
For interest a more efficient loop can be done by counting and writing down,
mov r0, #9 ; start value
ldr r1, =array1 ; array pointer
writeloop:
str r0, [r1, r0, lsl #2] ; index with r1 base by r0 scaled by *4
subs r0, r0, #1
bne writeloop
Your original example was writing the pointer to the array; often referred to as 'value equals address'. If this is what you want,
ldr r0, =array_end ; finished?
ldr r1, =array1 ; array pointer
write_loop:
str r1, [r1], #4 ; add four and update after storing
cmp r0, r1
bne write_loop
; code to jump somewhere else and not execute data.
.balign 4
array1: skip 40
array_end: