I know I am a little late but was having the same problem (see How do I save an encoder-decoder model with TensorFlow? for more details) and figured out a solution. It's a little hacky, but it works!
Step 1 - Saving your model
Save your tokenizer (if applicable). Then individually save the weights of the model you used to train your data (naming your layers helps here).
# Save the tokenizer
with open('tokenizer.pickle', 'wb') as handle:
pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
# save the weights individually
for layer in model.layers:
weights = layer.get_weights()
if weights != []:
np.savez(f'{layer.name}.npz', weights)
Step 2 - reloading the weights
You will want to reload the tokenizer (as applicable) then load the weights you just saved. The loaded weights are in an npz
format so can't be used directly, but the very short documentation will tell you everything you need to know about this file type https://numpy.org/doc/stable/reference/generated/numpy.savez.html
# load the tokenizer
with open('tokenizer.pickle', 'rb') as handle:
tokenizer = pickle.load(handle)
# load the weights
w_encoder_embeddings = np.load('encoder_embeddings.npz', allow_pickle=True)
w_decoder_embeddings = np.load('decoder_embeddings.npz', allow_pickle=True)
w_encoder_lstm = np.load('encoder_lstm.npz', allow_pickle=True)
w_decoder_lstm = np.load('decoder_lstm.npz', allow_pickle=True)
w_dense = np.load('dense.npz', allow_pickle=True)
Step 3 - Recreate the your training model and apply the weights
You'll want to re-run the code you used to create your model. In my case this was:
encoder_inputs = Input(shape=(None,), name="encoder_inputs")
encoder_embeddings = Embedding(vocab_size, embedding_size, mask_zero=True, name="encoder_embeddings")(encoder_inputs)
# Encoder lstm
encoder_lstm = LSTM(512, return_state=True, name="encoder_lstm")
encoder_outputs, state_h, state_c = encoder_lstm(encoder_embeddings)
# discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,), name="decoder_inputs")
# target word embeddings
decoder_embeddings = Embedding(vocab_size, embedding_size, mask_zero=True, name="decoder_embeddings")
training_decoder_embeddings = decoder_embeddings(decoder_inputs)
# decoder lstm
decoder_lstm = LSTM(512, return_sequences=True, return_state=True, name="decoder_lstm")
decoder_outputs, _, _ = decoder_lstm(training_decoder_embeddings,
initial_state=encoder_states)
decoder_dense = TimeDistributed(Dense(vocab_size, activation='softmax'), name="dense")
decoder_outputs = decoder_dense(decoder_outputs)
# While training, model takes input and traget words and outputs target strings
loaded_model = Model([encoder_inputs, decoder_inputs], decoder_outputs, name="training_model")
Now you can apply your saved weights to these layers! It takes a little bit of investigation which weight goes to which layer, but this is made a lot easier by naming your layers and inspecting your model layers with model.layers
.
# set the weights of the model
loaded_model.layers[2].set_weights(w_encoder_embeddings['arr_0'])
loaded_model.layers[3].set_weights(w_decoder_embeddings['arr_0'])
loaded_model.layers[4].set_weights(w_encoder_lstm['arr_0'])
loaded_model.layers[5].set_weights(w_decoder_lstm['arr_0'])
loaded_model.layers[6].set_weights(w_dense['arr_0'])
Step 4 - Create the inference model
Finally, you can now create your inference model based on this training model! Again in my case this was:
encoder_model = Model(encoder_inputs, encoder_states)
# Redefine the decoder model with decoder will be getting below inputs from encoder while in prediction
decoder_state_input_h = Input(shape=(512,))
decoder_state_input_c = Input(shape=(512,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
inference_decoder_embeddings = decoder_embeddings(decoder_inputs)
decoder_outputs2, state_h2, state_c2 = decoder_lstm(inference_decoder_embeddings, initial_state=decoder_states_inputs)
decoder_states2 = [state_h2, state_c2]
decoder_outputs2 = decoder_dense(decoder_outputs2)
# sampling model will take encoder states and decoder_input(seed initially) and output the predictions(french word index) We dont care about decoder_states2
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs2] + decoder_states2)
And voilà! You can now make inferences using the previously trained model!