I am building a CNN model with the sequential keras API but getting the following error on line 12 (model.add(UpSampling2D((2, 2), padding='same')))
TypeError: ('Keyword argument not understood:', 'padding')
I am using Keras 2.2.4 and Tensorflow 1.12.0
Any ideas as to why this is happening?
My code is:
# Fit regression DNN model
print("Creating/Training CNN")
model = Sequential()
model.add( Conv2D(16, (3, 3), input_shape=(128,128,1), activation='relu', padding = 'same') )
model.add(MaxPooling2D((2, 2), padding='same'))
model.add( Conv2D(8, (3, 3), activation='relu', padding='same') )
model.add(MaxPooling2D((2, 2), padding='same'))
model.add( Conv2D(8, (3, 3), activation='relu', padding='same') )
model.add(MaxPooling2D((2, 2), padding='same', name = 'grab_that'))
model.add( Conv2D(8, (3, 3), activation='relu', padding='same') )
model.add(UpSampling2D((2, 2), padding='same'))
model.add( Conv2D(8, (3, 3), activation='relu', padding='same') )
model.add(UpSampling2D((2, 2), padding='same'))
model.add( Conv2D(16, (3, 3), activation='relu', padding='same') )
model.add(UpSampling2D((2, 2), padding='same'))
model.add( Conv2D(1, (3, 3), activation='sigmoid', padding='same') )
model.compile(optimizer='adadelta', loss='binary_crossentropy', metrics=[binary_accuracy])
history = model.fit(data_train,data_train,verbose=1,epochs=1)