In my application i am reading 40 GB text files that is totally spread across 188 files . I split this files and create xml files per line in spark using pair rdd . For 40 GB of input it will create many millions small xml files and this is my requirement. All working fine but when spark saves files in S3 it throws error and job fails .
Here is the exception i get
Caused by: java.nio.file.FileSystemException: /mnt/s3/emrfs-2408623010549537848/0000000000: Too many open files at sun.nio.fs.UnixException.translateToIOException(UnixException.java:91) at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:102) at sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:107) at sun.nio.fs.UnixFileSystemProvider.newByteChannel(UnixFileSystemProvider.java:214) at java.nio.file.Files.newByteChannel(Files.java:361) at java.nio.file.Files.createFile(Files.java:632) at com.amazon.ws.emr.hadoop.fs.files.TemporaryFiles.create(TemporaryFiles.java:70) at com.amazon.ws.emr.hadoop.fs.s3n.MultipartUploadOutputStream.openNewPart(MultipartUploadOutputStream.java:493) ... 21 more
ApplicationMaster host: 10.97.57.198 ApplicationMaster RPC port: 0 queue: default start time: 1542344243252 final status: FAILED
tracking URL: http://ip-10-97-57-234.tr-fr-nonprod.aws-int.thomsonreuters.com:20888/proxy/application_1542343091900_0001/ user: hadoop Exception in thread "main" org.apache.spark.SparkException: Application application_1542343091900_0001 finished with failed status
And this as well
com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.model.AmazonS3Exception: Please reduce your request rate. (Service: Amazon S3; Status Code: 503; Error Code: SlowDown; Request ID: D33581CA9A799F64; S3 Extended Request ID: /SlEplo+lCKQRVVH+zHiop0oh8q8WqwnNykK3Ga6/VM2HENl/eKizbd1rg4vZD1BZIpp8lk6zwA=), S3 Extended Request ID: /SlEplo+lCKQRVVH+zHiop0oh8q8WqwnNykK3Ga6/VM2HENl/eKizbd1rg4vZD1BZIpp8lk6zwA=
Here is my code to do that .
object TestAudit {
def main(args: Array[String]) {
val inputPath = args(0)
val output = args(1)
val noOfHashPartitioner = args(2).toInt
//val conf = new SparkConf().setAppName("AuditXML").setMaster("local");
val conf = new SparkConf().setAppName("AuditXML")
val sc = new SparkContext(conf);
val input = sc.textFile(inputPath)
val pairedRDD = input.map(row => {
val split = row.split("\\|")
val fileName = split(0)
val fileContent = split(1)
(fileName, fileContent)
})
import org.apache.hadoop.io.NullWritable
import org.apache.spark.HashPartitioner
import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat
class RddMultiTextOutputFormat extends MultipleTextOutputFormat[Any, Any] {
override def generateActualKey(key: Any, value: Any): Any = NullWritable.get()
override def generateFileNameForKeyValue(key: Any, value: Any, name: String): String = key.asInstanceOf[String]
}
pairedRDD.partitionBy(new HashPartitioner(10000)).saveAsHadoopFile("s3://a205381-tr-fr-development-us-east-1-trf-auditabilty//AUDITOUTPUT", classOf[String], classOf[String], classOf[RddMultiTextOutputFormat], classOf[GzipCodec])
}
}
Even i tried reducing no of HashPartitioner then also it does not work