1

I want to use the Mahout as the recommender system.

In my project, there are contents, tags,reactions. User share a content after tagged and other users can read the content and give reactions.

I want to recommend contents when any user read a content.

In that case, I will not have the preference value if I use just reader information that's why I want to use reactions of content and tags of content with default mahout item similarity.

I could not be sure that using the reaction and tag information is the correct way in the recommender system. Is it a recommender problem or not.

If it is a correct way that i explained above, I'm thinking use a composite object as the ItemSimilarity which wraps a Mahout similarity implementation (e.g. TanimotoCoefficientSimilarity) then add the similarity calculation result with tag and reaction similarity results.

Model :

user_id    viewed_content_id
---------  -----------------
1             102
1             1032
2             105

content_id    reaction_id   reaction_count
----------    -----------   -------------
102             5              10000       
105             3              500
206             5              2000


content_id    tag_id
----------    ------
1              3
1              4   
1              3
2              3
2              1
3              3  
3              3

(Any content will have about 5 reaction option and about 5 tag.)

Item similarity class :

public class ContentSimilarity implements ItemSimilarity {

    private ItemSimilarity similarity;
    private FastByIDMap<ContentItem> map = new FastByIDMap<>();

    private ContentSimilarity() {
    }

    /**
     * 
     * @param dataModel
     * @param similarity
     *            ---> let assume that TanimotoCoefficientSimilarity
     * @return
     * @throws TasteException
     */
    public static ContentSimilarity createWith(DataModel dataModel, ItemSimilarity similarity) throws TasteException {
    ContentSimilarity customSimilarity = new ContentSimilarity();
    customSimilarity.setSimilarity(similarity);
    return customSimilarity;
    }

    @Override
    public void refresh(Collection<Refreshable> alreadyRefreshed) {
    similarity.refresh(alreadyRefreshed);

    }

    @Override
    public double itemSimilarity(long itemID1, long itemID2) throws TasteException {
    double similarityResult = similarity.itemSimilarity(itemID1, itemID2) + customSimilarity(itemID1, itemID2);
    return similarityResult;
    }

    int threshold = 10;

    public double customSimilarity(long itemID1, long itemID2) throws TasteException {
    ContentItem item1 = map.get(itemID1);
    ContentItem item2 = map.get(itemID2);
    double score = 0.0;
    try {
        // tag similarity
        int tagIntersection = item1.getTagsAsFastIDSet().intersectionSize(item2.getTagsAsFastIDSet());

        // reactionSimilarity
        FastByIDMap<Long> item1Map = item1.getReactionsAsFastByIDMap();
        FastByIDMap<Long> item2Map = item2.getReactionsAsFastByIDMap();
        LongPrimitiveIterator item1Itr = item1Map.keySetIterator();

        int reactionScore = 0;

        while (item1Itr.hasNext()) {
        long item1Key = item1Itr.next();
        long item1Val = item1Map.get(item1Key);
        Long item2ValO = item2Map.get(item1Key);
        if (item1Val > threshold && item2ValO > threshold) {
            reactionScore += item2ValO == null ? 0 : 1;
        }
        }
        score = tagIntersection + reactionScore; // max score is 10
    } catch (IOException e) {
        e.printStackTrace();
    }

    return score / 10;
    }

    @Override
    public double[] itemSimilarities(long itemID1, long[] itemID2s) throws TasteException {
    return similarity.itemSimilarities(itemID1, itemID2s);
    }

    @Override
    public long[] allSimilarItemIDs(long itemID) throws TasteException {
    return similarity.allSimilarItemIDs(itemID);
    }

    public ItemSimilarity getSimilarity() {
    return similarity;
    }

    public void setSimilarity(ItemSimilarity similarity) {
    this.similarity = similarity;
    }

}
erdem
  • 103
  • 1
  • 11

0 Answers0