I've taken Nathan's code (see his answer to this question), and added another possible implementation (replvector3
).
My idea here stems from you not really needing a circular shift. You need to right-shift and add zeros to the left. If you start with a pre-allocated array (this is really where the big wins in time are for you, the rest is peanuts), then you already have the zeros. Now you just need to copy over myMat
to the right locations.
These are the times I see (MATLAB R2017a):
OP's, with pre-allocation: 1.1730e-04
Nathan's: 5.1992e-05
Mine: 3.5426e-05
^ shift by one on purpose, to make comparison of times easier
This is the full copy, copy-paste into an M-file and run:
function so
shift_right = 2;
width = 249;
myMat = [ 1 0 -1 0 ;
0 2 0 -2 ];
N = 20;
A = replvector1(myMat,shift_right,width,N);
B = replvector2(myMat,shift_right,width,N);
norm(B(:)-A(:))
C = replvector3(myMat,shift_right,width,N);
norm(C(:)-A(:))
timeit(@()replvector1(myMat,shift_right,width,N))
timeit(@()replvector2(myMat,shift_right,width,N))
timeit(@()replvector3(myMat,shift_right,width,N))
% Original version, modified to pre-allocate
function A = replvector1(myMat,shift_right,width,N)
% Assuming width > shift_right * (N-1) + size(myMat,2)
myMat(1,width) = 0;
M = size(myMat,1);
A = zeros(M*(N-1),width);
for i = 1:N-1
aux = circshift(myMat,[0,shift_right*(i-1)]);
aux(:,1:shift_right*(i-1)) = 0;
A(M*(i-1)+(1:M),:) = aux;
end
% Nathan's version
function A = replvector2(myMat,shift_right,width,N)
[i,j,a] = find(myMat);
i = kron(ones(N-1,1),i) + kron((0:N-2)',ones(size(i))) * size(myMat,1);
j = kron(ones(N-1,1),j) + kron((0:N-2)',ones(size(j))) * shift_right;
a = kron(ones(N-1,1),a);
ok = j<=width;
A = full(sparse(i(ok),j(ok),a(ok),(N-1)*size(myMat,1),width));
% My trivial version with loops
function A = replvector3(myMat,shift_right,width,N)
% Assuming width > shift_right * (N-1) + size(myMat,2)
[M,K] = size(myMat);
A = zeros(M*(N-1),width);
for i = 1:N-1
A(M*(i-1)+(1:M),shift_right*(i-1)+(1:K)) = myMat;
end