My friend Prasad Raghavendra and me, were trying to experiment with Machine Learning on audio.
We were doing it to learn and to explore interesting possibilities at any upcoming get-togethers. I decided to see how deep learning or any machine learning can be fed with certain audios rated by humans (evaluation).
To our dismay, we found that the problem had to be split to accommodate for the dimensionality of input. So, we decided to discard vocals and assess by accompaniments with an assumption that vocals and instruments are always correlated.
We tried to look for mp3/wav to MIDI converter. Unfortunately, they were only for single instruments on SourceForge and Github and other options are paid options. (Ableton Live, Fruity Loops etc.) We decided to take this as a sub-problem.
We thought of FFT, band-pass filters and moving window to accommodate for these.
But, we are not understanding as to how we can go about splitting instruments if chords are played and there are 5-6 instruments in file.
What are the algorithms that I can look for?
My friend knows to play Keyboard. So, I will be able to get MIDI data. But, are there any data-sets meant for this?
How many instruments can these algorithms detect?
How do we split the audio? We do not have multiple audios or the mixing matrix
We were also thinking about finding out the patterns of accompaniments and using those accompaniments in real-time while singing along. I guess we will be able to think about it once we get answers to 1,2,3 and 4. (We are thinking about both Chord progressions and Markovian dynamics)
Thanks for all help!
P.S.: We also tried FFT and we are able to see some harmonics. Is it due to Sinc() in fft when rectangular wave is input in time domain? Can that be used to determine timbre?
We were able to formulate the problem roughly. But, still, we are finding it difficult to formulate the problem. If we use frequency domain for certain frequency, then the instruments are indistinguishable. A trombone playing at 440 Hz or a Guitar playing at 440 Hz would have same frequency excepting timbre. We still do not know how we can determine timbre. We decided to go by time domain by considering notes. If a note exceeds a certain octave, we would use that as a separate dimension +1 for next octave, 0 for current octave and -1 for the previous octave.
If notes are represented by letters such as 'A', 'B', 'C' etc, then the problem reduces to mixing matrices.
O = MI during training.
M is the mixing matrix that will have to be found out using the known O output and I input of MIDI file.
During prediction though, M must be replaced by a probability matrix P which would be generated using previous M matrices.
The problem reduces to Ipredicted = P-1O. The error would then be reduced to LMSE of I. We can use DNN to adjust P using back-propagation.
But, in this approach, we assume that the notes 'A','B','C' etc are known. How do we detect them instantaneously or in small duration like 0.1 seconds? Because, template matching may not work due to harmonics. Any suggestions would be much appreciated.