I have the following data set:
y <- c(5,8,6,2,3,1,2,4,5)
x <- c(-1,-1,-1,0,0,0,1,1,1)
d1 <- as.data.frame(cbind(y=y,x=x))
I when I fit a model to this data set with glm()
, using a Poisson distribution with a log link:
model <- glm(y~x, data=d1, family = poisson(link="log"))
summary(model)
I get the following output:
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.3948 0.1671 8.345 <2e-16 ***
x -0.3038 0.2250 -1.350 0.177
I want to write a function for the iterative re-weighted least squares regression that will obtain the same estimates. So far I have been able to do this using an identity link, but not a log link, as I do in the glm.
X <- cbind(1,x)
#write an interatively reweighted least squares function with log link
glmfunc.log <- function(d,betas,iterations=1)
{
X <- cbind(1,d[,"x"])
z <- as.matrix(betas[1]+betas[2]*d[,"x"]+((d[,"y"]-exp(betas[1]+betas[2]*d[,"x"]))/exp(betas[1]+betas[2]*d[,"x"])))
for(i in 1:iterations) {
W <- diag(exp(betas[1]+betas[2]*d[,"x"]))
betas <- solve(t(X)%*%W%*%X)%*%t(X)%*%W%*%z
}
return(list(betas=betas,Information=t(X)%*%W%*%X))
}
#run the function
model <- glmfunc.log(d=d1,betas=c(1,0),iterations=1000)
Which gives output:
#print betas
model$betas
[,1]
[1,] 1.5042000
[2,] -0.6851218
Does anyone know where I am going wrong in writing the custom function and how I would correct this to replicate the output from the glm()
function