I have made some Numpy C-extensions before with great help from this site, but as far as I can see the returned parameters are all fixed length.
Is there any way to have a Numpy C-extension return a variable length numpy array instead?
I have made some Numpy C-extensions before with great help from this site, but as far as I can see the returned parameters are all fixed length.
Is there any way to have a Numpy C-extension return a variable length numpy array instead?
You may find it easier to make numpy extensions in Cython using the Numpy C-API which simplifies the process as it allows you to mix python and c objects. In that case there is little difficult about making a variable length array, you can simply specify an array with an arbitrary shape.
The Cython numpy tutorial is probably the best source on this topic.
For example, here is a function I recently wrote:
import numpy as np
cimport numpy as np
cimport cython
dtype = np.double
ctypedef double dtype_t
np.import_ufunc()
np.import_array()
def ewma(a, d, axis):
#Calculates the exponentially weighted moving average of array a along axis using the parameter d.
cdef void *args[1]
cdef double weight[1]
weight[0] = <double>np.exp(-d)
args[0] = &weight[0]
return apply_along_axis(&ewma_func, np.array(a, dtype = float), np.double, np.double, False, &(args[0]), <int>axis)
cdef void ewma_func(int n, void* aData,int astride, void* oData, int ostride, void** args):
#Exponentially weighted moving average calculation function
cdef double avg = 0.0
cdef double weight = (<double*>(args[0]))[0]
cdef int i = 0
for i in range(n):
avg = (<double*>((<char*>aData) + i * astride))[0]*weight + avg * (1.0 - weight)
(<double*>((<char*>oData) + i * ostride))[0] = avg
ctypedef void (*func_1d)(int, void*, int, void*, int, void **)
cdef apply_along_axis(func_1d function, a, adtype, odtype, reduce, void** args, int axis):
#generic function for applying a cython function along a particular dimension
oshape = list(a.shape)
if reduce :
oshape[axis] = 1
out = np.empty(oshape, odtype)
cdef np.flatiter ita, ito
ita = np.PyArray_IterAllButAxis(a, &axis)
ito = np.PyArray_IterAllButAxis(out, &axis)
cdef int axis_length = a.shape[axis]
cdef int a_axis_stride = a.strides[axis]
cdef int o_axis_stride = out.strides[axis]
if reduce:
o_axis_stride = 0
while np.PyArray_ITER_NOTDONE(ita):
function(axis_length, np.PyArray_ITER_DATA (ita), a_axis_stride, np.PyArray_ITER_DATA (ito), o_axis_stride, args)
np.PyArray_ITER_NEXT(ita)
np.PyArray_ITER_NEXT(ito)
if reduce:
oshape.pop(axis)
out.shape = oshape
return out
If this doesn't suit you, there is a function for making a new empty array with arbitrary shape (link).
I am interpreting your question to mean "I have a function that takes a NumPy array of length n, but it will return another array of length m different from n." If that is the case, you will need to malloc
a new C array in the extension, e.g.
new_array = malloc(m * sizeof(int64)); // or whatever your data type is
then create a new NumPy array with that. This example assumes a 1D array:
int npy_intp dims[1];
dims[0] = m;
PyArrayObject *out = (PyArrayObject *)PyArray_SimpleNewFromData(1, // 1D array
dims, // dimensions
NPY_INT64, // type
new_array);
PyArray_ENABLEFLAGS(out, NPY_ARRAY_OWNDATA);
Then return the new array. The important part here is to set the NPY_ARRAY_OWNDATA
flag so that the memory you allocated is freed when the Python object is garbage collected.