The only advantage of ones'-complement notation for integers is that it allows conversions to and from sign-magnitude form to be performed without a carry chain. Building a computer with a set of blinkenlights that show each register's value in sign-magnitude form will be much more convenient if the registers use ones'-complement form than if they use two's-complement form. If one wanted to use separate storage latches for the blinkenlights and the CPU's registers, the easiest way to accommodate things would be to have one circuit which translates two's-complement to one's-complement or sign-magnitude form, and then have each register write simultaneously store the two's-complement value in the register while updating the blinkenlight latches with the sign-magnitude value. Latching circuitry is sufficiently expensive, however, that if registers are being built out of discrete latches anyway, adding some circuitry to the ALU to make it use ones'-complement, and then feeding the lights from the CPU's "real" registers, may be cheaper than including an extra set of latches for the lights.
Over the last few decades, of course, the relative costs of different circuit elements have shifted to the point that it would be absurd to have lights wired to directly report the state of a CPU's registers. Consequently, the practical advantages that ones'-complement designs might have had in the past are no longer applicable.