I am trying to run a gaussian process regression with two features by extending the first example in https://pymc-devs.github.io/pymc3/notebooks/GP-introduction.html
n = 20
X = np.array([list(a) for a in zip(np.sort(3*np.random.rand(n)), np.sort(3*np.random.rand(n)))])
y = np.random.normal(size=n)
with pm.Model() as model:
# priors on the covariance function hyperparameters
l = np.array([pm.Uniform('l1', 0, 10), pm.Uniform('l2', 0, 10)])
# uninformative prior on the function variance
log_s2_f = pm.Uniform('log_s2_f', lower=-10, upper=5)
s2_f = pm.Deterministic('s2_f', tt.exp(log_s2_f))
# uninformative prior on the noise variance
log_s2_n = pm.Uniform('log_s2_n', lower=-10, upper=5)
s2_n = pm.Deterministic('s2_n', tt.exp(log_s2_n))
# covariance functions for the function f and the noise
f_cov = s2_f * pm.gp.cov.ExpQuad(input_dim=2, lengthscales=l)
y_obs = pm.gp.GP('y_obs', cov_func=f_cov, sigma=s2_n, observed={'X':X, 'Y':y})
Here the inputs of X
and y
are for testing the shape of the inputs.
When I run the code I get a theano AsTensorError
error which is traced to this in pymc3
/usr/local/lib/python2.7/site-packages/pymc3/gp/cov.pyc in square_dist(self, X, Z)
124
125 def square_dist(self, X, Z):
--> 126 X = tt.mul(X, 1.0 / self.lengthscales)
127 Xs = tt.sum(tt.square(X), 1)
128 if Z is None:
Is it possible to run multiple gaussian regression in pymc3? If so I am sure I have messed up with the dimensions somewhere.