There were a similar question here Gensim Doc2Vec Exception AttributeError: 'str' object has no attribute 'words', but it didn't get any helpful answers.
I'm trying to train Doc2Vec on 20newsgroups corpora. Here's how I build the vocab:
from sklearn.datasets import fetch_20newsgroups
def get_data(subset):
newsgroups_data = fetch_20newsgroups(subset=subset, remove=('headers', 'footers', 'quotes'))
docs = []
for news_no, news in enumerate(newsgroups_data.data):
tokens = gensim.utils.to_unicode(news).split()
if len(tokens) == 0:
continue
sentiment = newsgroups_data.target[news_no]
tags = ['SENT_'+ str(news_no), str(sentiment)]
docs.append(TaggedDocument(tokens, tags))
return docs
train_docs = get_data('train')
test_docs = get_data('test')
alldocs = train_docs + test_docs
model = Doc2Vec(dm=dm, size=size, window=window, alpha = alpha, negative=negative, sample=sample, min_count = min_count, workers=cores, iter=passes)
model.build_vocab(alldocs)
Then I train the model and save the result:
model.train(train_docs, total_examples = len(train_docs), epochs = model.iter)
model.train_words = False
model.train_labels = True
model.train(test_docs, total_examples = len(test_docs), epochs = model.iter)
model.save(output)
The problem appears when I try to load the model: screen
I tried:
using LabeledSentence instead of TaggedDocument
yielding TaggedDocument instead of appending them to the list
setting min_count to 1 so no word would be ignored (just in case)
Also the problem occurs on python2 as well as python3.
Please, help me solve this.