In PyMC3, you can implement the CAR model using the scan function of Theano. There is a sample code in their documentation. There are two implementations for CAR in the linked document. Here is the first one [Source]:
from theano import scan
floatX = "float32"
from pymc3.distributions import continuous
from pymc3.distributions import distribution
class CAR(distribution.Continuous):
"""
Conditional Autoregressive (CAR) distribution
Parameters
----------
a : list of adjacency information
w : list of weight information
tau : precision at each location
"""
def __init__(self, w, a, tau, *args, **kwargs):
super(CAR, self).__init__(*args, **kwargs)
self.a = a = tt.as_tensor_variable(a)
self.w = w = tt.as_tensor_variable(w)
self.tau = tau*tt.sum(w, axis=1)
self.mode = 0.
def get_mu(self, x):
def weigth_mu(w, a):
a1 = tt.cast(a, 'int32')
return tt.sum(w*x[a1])/tt.sum(w)
mu_w, _ = scan(fn=weigth_mu,
sequences=[self.w, self.a])
return mu_w
def logp(self, x):
mu_w = self.get_mu(x)
tau = self.tau
return tt.sum(continuous.Normal.dist(mu=mu_w, tau=tau).logp(x))
with pm.Model() as model1:
# Vague prior on intercept
beta0 = pm.Normal('beta0', mu=0.0, tau=1.0e-5)
# Vague prior on covariate effect
beta1 = pm.Normal('beta1', mu=0.0, tau=1.0e-5)
# Random effects (hierarchial) prior
tau_h = pm.Gamma('tau_h', alpha=3.2761, beta=1.81)
# Spatial clustering prior
tau_c = pm.Gamma('tau_c', alpha=1.0, beta=1.0)
# Regional random effects
theta = pm.Normal('theta', mu=0.0, tau=tau_h, shape=N)
mu_phi = CAR('mu_phi', w=wmat, a=amat, tau=tau_c, shape=N)
# Zero-centre phi
phi = pm.Deterministic('phi', mu_phi-tt.mean(mu_phi))
# Mean model
mu = pm.Deterministic('mu', tt.exp(logE + beta0 + beta1*aff + theta + phi))
# Likelihood
Yi = pm.Poisson('Yi', mu=mu, observed=O)
# Marginal SD of heterogeniety effects
sd_h = pm.Deterministic('sd_h', tt.std(theta))
# Marginal SD of clustering (spatial) effects
sd_c = pm.Deterministic('sd_c', tt.std(phi))
# Proportion sptial variance
alpha = pm.Deterministic('alpha', sd_c/(sd_h+sd_c))
trace1 = pm.sample(1000, tune=500, cores=4,
init='advi',
nuts_kwargs={"target_accept":0.9,
"max_treedepth": 15})
The M function is written here as:
mu = pm.Deterministic('mu', tt.exp(logE + beta0 + beta1*aff + theta + phi))