I am doing a project about brain tumor segmentation. And when I apply N4BiasCorrection to my file(.mha), I used slicer and simpleITK methods. Slicer performs well but is time-consuming because I do not know how to use code to run through all my file, I just use the Slicer-N4ITK module and process each file by hand.
Then I try the simpleITK with python, problems show up. First, it runs very slow on each .mha file and gets a really big file(36.7MB compare with 4.4MB using Slicer) after applying n4biasfieldcorrection. Second, in order to speed up, I set the Shrink parameter to 4 but the whole .mha file becomes really blurred, which will not happen using slicer.
So can anyone tell me whether it is normal ? are there any methods to speed up without blurring my file? Or could you please tell me an example to apply N4BiasFieldCorrection within Slicer python interactor .
Thanks!!
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
from __future__ import print_function
import SimpleITK as sitk
import sys
import os
#from skimage import io
from glob import glob
import numpy as np
def n4process(inputimage, outpath):
inputImage = sitk.ReadImage( inputimage )
# numberFilltingLevels = 4
maskImage = sitk.OtsuThreshold( inputImage, 0, 1, 200 )
# inputImage = sitk.Shrink( inputImage, [ 2 ] * inputImage.GetDimension() )
# maskImage = sitk.Shrink( maskImage, [ 2 ] * inputImage.GetDimension() )
inputImage = sitk.Cast( inputImage, sitk.sitkFloat32 )
corrector = sitk.N4BiasFieldCorrectionImageFilter();
corrector.SetConvergenceThreshold=0.001
corrector.SetBiasFieldFullWidthAtHalfMaximum=0.15
corrector.SetMaximumNumberOfIterations=50
corrector.SetNumberOfControlPoints=4
corrector.SetNumberOfHistogramBins=200
corrector.SetSplineOrder=3
corrector.SetWienerFilterNoise=0.1
output = corrector.Execute( inputImage,maskImage )
sitk.WriteImage( output, outpath )
input_path = '/Users/chenrui/Desktop/BRATS2015_Training/HGG/'
patientpath = glob('/Users/chenrui/Desktop/BRATS2015_Training/HGG/*')
num = 0
for i in patientpath:
num = num+1
#i = '/Users/chenrui/Desktop/BRATS2015_Training/HGG/brats_2013_pat0001_1'
flair = glob(i + '/*Flair*/*.mha')
flair_outpath = '/Users/chenrui/Desktop/BRATS2015_Training/test/'+'Flair/'+str(num)+'.mha'
n4process(flair[0], flair_outpath)
t2 = glob(i + '/*T2*/*.mha')
t2_outpath = '/Users/chenrui/Desktop/BRATS2015_Training/HGG_n4/'+'T2/'+str(num)+'.mha'
n4process(t2[0], t2_outpath)
t1c = glob(i + '/*_T1c*/*.mha')
t1c_outpath = '/Users/chenrui/Desktop/BRATS2015_Training/HGG_n4/'+'T1c/'+str(num)+'.mha'
n4process(t1c[0], t1c_outpath)
t1 = glob(i + '/*_T1*/*.mha')
t1 = [scan for scan in t1 if scan not in t1c]
t1_outpath = '/Users/chenrui/Desktop/BRATS2015_Training/HGG_n4/'+'T1/'+str(num)+'.mha'
n4process(t1[0],t1_outpath)