I'm currently using a java library to do some naive experimentation with offline handwriting recognition. I give my program an image of a pre-written English sentence and segment it into individual characters, which I then feed to a very naively constructed neural network.
I'm new to the idea of neural nets, so my question is where to start with regard to optimising this network's hyperparameters. Currently it's a simple feed forward network which I train using resilient propagation, so the only parameters I can optimise are the number of hidden layers, and the number of neurons in each hidden layer. I could of course do an exhaustive search through a large but finite number of combination, but this would be very time-consuming, and I'm sure someone out there who is more informed in this art must be able to point me in the right direction.
I found a post somewhere on here that stated a good place to start for any network in general was to use only one hidden layer with number of neurons equal to the mean number of neurons in your input and output layer, so that's what I'm doing at the moment.
I'm getting performance of about 40-60% (depending on character) accuracy with this model.