Here's some sample data to play with:
In [1]:
df = pd.DataFrame(np.transpose([np.random.choice(['ebt','other'], (10)),
np.random.rand(10)]), columns=['paymenttypeid','other'])
df
Out[1]:
paymenttypeid other
0 other 0.3130770966143612
1 other 0.5167434068096931
2 ebt 0.7606898392115471
3 ebt 0.9424572692382547
4 ebt 0.624282017575857
5 ebt 0.8584841824784487
6 other 0.5017083765654611
7 other 0.025994123211164233
8 ebt 0.07045354449612984
9 ebt 0.11976351556850084
Let's convert this to a dataframe
In [2]: data = dd.from_pandas(df, npartitions=2)
and use apply
(on a Series) to assign:
In [3]:
data['ebt_dummy'] = data.paymenttypeid.apply(lambda x: 1 if x =='ebt' else 0, meta=('paymenttypeid', 'str'))
data.compute()
Out [3]:
paymenttypeid other ebt_dummy
0 other 0.3130770966143612 0
1 other 0.5167434068096931 0
2 ebt 0.7606898392115471 1
3 ebt 0.9424572692382547 1
4 ebt 0.624282017575857 1
5 ebt 0.8584841824784487 1
6 other 0.5017083765654611 0
7 other 0.025994123211164233 0
8 ebt 0.07045354449612984 1
9 ebt 0.11976351556850084 1
Update:
It seems that the meta
you pass is the problem, since this works:
data = data.map_partitions(lambda df: df.assign(
ebt_dummy = np.where((df["paymenttypeid"]=='ebt'), 1, 0)))
data.compute()
In my example, if I wanted to specify the meta
, I would have to pass the dtypes of the current data
, not the one I expect once I assign:
data.map_partitions(lambda df: df.assign(
ebt_dummy = np.where((df["paymenttypeid"]=='ebt'), 1, 0)),
meta={'paymenttypeid': 'str', 'other': 'float64'})