I have been struggling to understand the logic of last 6 lines in query()
function.
This is the code for the problem GSS1 on spoj.
Solution link
#include <cstdio>
#include <algorithm>
#define MAX 70000
using namespace std;
struct no {
int lsum, rsum, msum;
};
int array[ MAX + 1 ], sums[ MAX + 1 ];
no tree[ 4 * MAX + 1 ];
void init( int node, int i, int j ) {
if ( i == j ) {
tree[ node ] = ( ( no ) { array[ i ], array[ i ], array[ i ] } );
}
else {
init( node * 2, i, ( i + j ) / 2 );
init( node * 2 + 1, ( i + j ) / 2 + 1, j );
no left = tree[ node * 2 ], right = tree[ node * 2 + 1 ];
tree[ node ].lsum = max( left.lsum, sums[ ( i + j ) / 2 ] - sums[ i - 1 ] + right.lsum );
tree[ node ].rsum = max( right.rsum, sums[ j ] - sums[ ( i + j ) / 2 ] + left.rsum );
tree[ node ].msum = max( left.msum, max( right.msum, left.rsum + right.lsum ) );
}}
no query( int node, int a, int b, int i, int j ) {
if ( a == i && b == j ) {
return tree[ node ];
}
else if ( j <= ( a + b ) / 2 ) {
return query( node * 2, a, ( a + b ) / 2, i, j );
}
if ( i > ( a + b ) / 2 ) {
return query( node * 2 + 1, ( a + b ) / 2 + 1, b, i, j );
}
no left = query( node * 2, a, ( a + b ) / 2, i, ( a + b ) / 2 );
no right = query( node * 2 + 1, ( a + b ) / 2 + 1, b, ( a + b ) / 2 + 1, j );
return ( ( no ) {
max( left.lsum, sums[ ( a + b ) / 2 ] - sums[ i - 1 ] + right.lsum ),
max( right.rsum, sums[ b ] - sums[ ( a + b ) / 2 ] + left.rsum ),
max( left.msum, max( right.msum, left.rsum + right.lsum ) )
} ); }
int main() {
int i, N, q, l, r;
scanf( "%d", &N );
for ( i = 0; i < N; ++i ) {
scanf( "%d", array + i );
if ( i == 0 ) {
sums[ i ] = array[ i ];
}
else {
sums[ i ] = sums[ i - 1 ] + array[ i ];
}
}
init( 1, 0, N - 1 );
scanf( "%d", &q );
for ( i = 0; i < q; ++i ) {
scanf( "%d%d", &l, &r );
--l;
--r;
printf( "%d\n", query( 1, 0, N - 1, l, r ).msum );
}
return 0; }
What is the need of that no = left && no = right and that return in query function.
Shall anyone suggest better implementation/tutorial fr segment tree.
I'm unable to visualize these recursions while implementing data structures. Any tip?