;==============================================================================================
; recursive procedure:
; supersum(int x)
; returns 1*2 + 2*3 + 3*4 + ... + i*(i+1)
supersum PROC
push ebp ; start of every procedure
mov ebp, esp
push ebx
; Actual subproc calc here
mov eax, [ebp +8] ; returning eax to the original called value
cmp eax,1
je basecase
dec eax ; (n-1) ; its just a lie...
mov recnum, eax ; saving dec val for call
mul double ; 2(n-1)
mov rhs, eax ; the right hand side is finished
push recnum
call sumseries ; a_(n-1)
add esp, 4
definition:
add eax, rhs ; a_(n-1)+ 2(n-1)
jmp skp
basecase: ; a_1 = 0
mov eax, 0
mov rhs, 2
jmp definition
skp:
pop ebx
pop ebp
ret
supersum ENDP
;============================================================================
The explicit definition of the serries I'm trying to get is 1*2 + 2*3 + 3*4 ... + i(i+1).
I've got the math for it down and I found that the recursive definition for the series is a_n = a_(n-1) + 2(n-1) with a_1 = 0 as a base case. I'm trying to figure out why this code keeps giving me the even series: {2,4,6,8,10 ...} instead of the series I'm trying to calculate