There are 350 samples for each of 50 letters. Neural network has 3 layers. Input layer 400(20*20 images), hidden 200 and output 50. The training parameters I've used are:
max_steps = 1000
max_err = 0.000001
condition = cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_EPS
criteria = (condition, max_steps, max_err)
train_params = dict(term_crit = criteria,
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
bp_dw_scale = 0.1,
bp_moment_scale = 0.1)
What are the the optimal values I can use for this situation?