This code works fine but the plot is not correct because the optimization function fmincon
will depend on the initial condition x0
and the number of iterations. For each value of alpha (a
) and beta (b
), I should run the optimization many times with different initial conditions x0
to verify that I am getting the right answer. More iterations might be required to get an accurate answer.
I want to be able to run the optimization with different initial conditions for x0
, a
and b
.
Function file
function f = threestate2(x,a,b)
c1 = cos(x(1))*(cos(x(5))*(cos(x(9))+cos(x(11)))+cos(x(7))*(cos(x(9))-cos(x(11))))...
+cos(x(3))*(cos(x(5))*(cos(x(9))-cos(x(11)))-cos(x(7))*(cos(x(9))+cos(x(11))));
c2=sin(x(1))*(sin(x(5))*(sin(x(9))*cos(x(2)+x(6)+x(10))+sin(x(11))*cos(x(2)+x(6)+x(12)))...
+sin(x(7))*(sin(x(9))*cos(x(2)+x(8)+x(10))-sin(x(11))*cos(x(2)+x(8)+x(12))))...
+sin(x(3))*(sin(x(5))*(sin(x(9))*cos(x(4)+x(6)+x(10))-sin(x(11))*cos(x(4)+x(6)+x(12)))...
-sin(x(7))*(sin(x(9))*cos(x(4)+x(8)+x(10))+sin(x(11))*cos(x(4)+x(8)+x(12))));
f=(a*a-b*b)*c1+2*a*b*c2;
Main file
%x=[x(1),x(2),x(3),x(4),x(5),x(6),x(7),x(8),x(9),x(10),x(11),x(12)]; % angles;
lb=[0,0,0,0,0,0,0,0,0,0,0,0];
ub=[pi,2*pi,pi,2*pi,pi,2*pi,pi,2*pi,pi,2*pi,pi,2*pi];
x0=[pi/8;0;pi/3;0;0.7*pi;.6;0;pi/2;.5;0;pi/4;0];
xout=[];
fout=[];
options = optimoptions(@fmincon,'Algorithm','interior-point','TolX',10^-10,'MaxIter',1500);
a=0:0.01:1;
w=NaN(length(a));
for i=1:length(a)
bhelp=(1-a(i)*a(i));
if bhelp>0
b=sqrt(bhelp);
[x,fval]=fmincon(@(x)threestate2(x,a(i),b),x0,[],[],[],[],lb,ub,[],options);
w(i)=fval;
w(i)=-w(i);
B(i)=b;
else
w(i)=NaN;
B(i)=b;
end
end
%surface(b,a,w)
%view(3)
%meshc(b,a,w)
x=a.^2;
plot(x,w)
grid on
ylabel('\fontname{Times New Roman} S_{max}(\Psi_{gs})')
xlabel('\fontname{Times New Roman}\alpha^2')
%ylabel('\fontname{Times New Roman}\beta')
title('\fontname{Times New Roman} Maximum of the Svetlichny operator(\alpha|000>+\beta|111>)')