I am trying to learn deep learning.
In torch tutorial,
https://github.com/torch/tutorials/blob/master/2_supervised/2_model.lua
https://github.com/torch/tutorials/blob/master/3_unsupervised/2_models.lua
Supervised model
-- Simple 2-layer neural network, with tanh hidden units
model = nn.Sequential()
model:add(nn.Reshape(ninputs))
model:add(nn.Linear(ninputs,nhiddens))
model:add(nn.Tanh())
model:add(nn.Linear(nhiddens,noutputs))
Unsupervised model
-- encoder
encoder = nn.Sequential()
encoder:add(nn.Linear(inputSize,outputSize))
encoder:add(nn.Tanh())
encoder:add(nn.Diag(outputSize))
-- decoder
decoder = nn.Sequential()
decoder:add(nn.Linear(outputSize,inputSize))
-- complete model
module = unsup.AutoEncoder(encoder, decoder, params.beta)
why unsupervised model needs to implement nn.Diag ?
Thanks in advance.