This may not be possible in theory, if so please elaborate.
I am trying to fit some data with Python's sklearn SVM class sklearn SVM class
When I use a linear kernel, I can extract the coefs using get_params method where
coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel.
So I can find the equation of best fit that depends on all the independent variables, and am able to use this equation elsewhere.
Is it possible to do the same (get a non-linear equation) from a nonlinear kernel (like the RBF or the polynomial kernel) using sklearn?
Thanks!
Tim