The increasing order of following functions shown in the picture below in terms of asymptotic complexity is:
(A) f1(n); f4(n); f2(n); f3(n)
(B) f1(n); f2(n); f3(n); f4(n);
(C) f2(n); f1(n); f4(n); f3(n)
(D) f1(n); f2(n); f4(n); f3(n)
a)time complexity order for this easy question was given as--->(n^0.99)*(logn) < n ......how? log might be a slow growing function but it still grows faster than a constant
b)Consider function f1 suppose it is f1(n) = (n^1.0001)(logn) then what would be the answer?
whenever there is an expression which involves multiplication between logarithimic and polynomial expression , does the logarithmic function outweigh the polynomial expression?
c)How to check in such cases suppose
1)(n^2)logn vs (n^1.5) which has higher time complexity? 2) (n^1.5)logn vs (n^2) which has higher time complexity?