Write the implementation of the function T findMedian() const
that computes the median value in the tree in O(n) time. Assume that the tree is a BST but is not necessarily balanced. Recall that the median of n numbers is defined as follows: If n is odd, the median is x such that the number of values smaller than x is equal to the number of values greater than x. If n is even, then one plus the number of values smaller than x is equal to the number of values greater than x. For example, given the numbers 8, 7, 2, 5, 9, the median is 7, because there are two values smaller than 7 and two values larger than 7. If we add number 3 to the set, the median becomes 5.
Here is the class of binary search tree node:
template <class T>
class BSTNode
{
public:
BSTNode(T& val, BSTNode* left, BSTNode* right);
~BSTNode();
T GetVal();
BSTNode* GetLeft();
BSTNode* GetRight();
private:
T val;
BSTNode* left;
BSTNode* right;
BSTNode* parent; //ONLY INSERT IS READY TO UPDATE THIS MEMBER DATA
int depth, height;
friend class BST<T>;
};
Binary search tree class:
template <class T>
class BST
{
public:
BST();
~BST();
bool Search(T& val);
bool Search(T& val, BSTNode<T>* node);
void Insert(T& val);
bool DeleteNode(T& val);
int Count(void) const;
T findMedian() const;
void BFT(void);
void PreorderDFT(void);
void PreorderDFT(BSTNode<T>* node);
void PostorderDFT(BSTNode<T>* node);
void InorderDFT(BSTNode<T>* node);
void ComputeNodeDepths(void);
void ComputeNodeHeights(void);
bool IsEmpty(void);
void Visit(BSTNode<T>* node);
void Clear(void);
private:
BSTNode<T> *root;
int depth;
int count;
int index = 0;; // I've added this member data.
void DelSingle(BSTNode<T>*& ptr);
void DelDoubleByCopying(BSTNode<T>* node);
void ComputeDepth(BSTNode<T>* node, BSTNode<T>* parent);
void ComputeHeight(BSTNode<T>* node);
void Clear(BSTNode<T>* node);
int Count(BSTNode<T>* node) const;
T findMedian(BSTNode<T>* node) const;
};
Here is the count code:
template <class T>
int BST<T>::Count() const
{
Count(root);
}
template <class T>
int BST<T>::Count(BSTNode<T>*node) const
{
if (node == NULL)
return 0;
return 1 + Count(node->left) + Count(node->right);
}
And here is the findMedian code:
template<class T>
T BST<T>::findMedian() const
{
findMedian(root);
}
template <class T>
T BST<T>::findMedian(BSTNode<T>* node) const
{
int counter = Count();
if (node == NULL)
return;
T tmp = findMedian(node->left);
if (tmp != NULL)
return tmp;
if (index == counter / 2)
return node->val;
index++;
return findMedian(node->right);
}
When building it I get the following errors:
Anyone has any clue how to fix this? And will this code work with an even number of elements?