Dear friends I am currently working on a disparity algorithm that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. But before that I am implementing the standard region growing algorithm in matlab to understand how it works. The first step of the baseline growing algorithm says that:
Require: Rectified images Il, Ir, initial correspondence seeds S, image similarity threshold. Compute similarity simil(s) for every seed s belonging to S.
Now i cannot understand this step. First of all how do i calculate initial seed points from two rectified images. Should i use SIFT algorithm in matlab or is there any better way to do it.???Can anybody also give me some idea about how does a region growing based disparity calculating algorithm works and whether it is better than SAD or SSD.