I have a dataset of 506 rows on which I am performing Leave-one-out Cross Validation, once I get the mean squared errors , I am computing the mean of the mean squared errors I found. This is changing everytime I run it. Is this expected ? If so, Can someone please explain why is it changing everytime I run it ?
To do leave one out CV, I shuffle the rows first , df is the data frame
df <-df[sample.int(nrow(df)),]
Then, I split the dataframe into 506 data frames and send it to lm() and get the MSE for each data frame (in this case, each row)
fit <- lm(train[,lastcolumn] ~.,data = train)
pred <- predict(fit,test)
pred <- mean((pred - test[,lastcolumn])^2)
And then I take the mean of all the MSEs I got.
Everytime I run all this , I get a different mean. Is this expected ?