This is an old post, but what you are asking for is decimal precision with binary mathematics. The conversion between the two is giving you an apparent distinction.
The main point, I think, which you are making is to do with identity, so that you can use equality/inequality comparisons between two numbers.
Because of the fact that there is a discrepancy between what we humans use (decimal) and what computers use (binary), we have three choices.
We use a decimal library. This is computationally costly, because we are using maths which are different to how computers work. There are several, and one day they may be adopted into std. See eg "ISO/IEC JTC1 SC22 WG21 N2849"
We learn to do our maths in binary. This is mentally costly, because it's not how we do our maths normally.
We change our algorithm to include an identity test.
We change our algorithm to use a difference test.
With option 3, it is where we make a decision as to just how close one number needs to be to another number to be considered 'the same number'.
One simple way of doing this is (as given by @SirGuy above) where we use ceiling or floor as a test - this is good, because it allows us to choose the significant number of digits we are interested in. It is domain specific, and the solution that he gives might be a bit more optimal if using a power of 2 rather than of 10.
You definitely would only want to do the calculation when using equality/inequality tests.
So now, our equality test would be (for 10 binary places (nearly 3dp))
// Normal identity test for floats.
// Quick but fails eg 1.0000023 == 1.0000024
return (a == b);
Becomes (with 2^10 = 1024).
// Modified identity test for floats.
// Works with 1.0000023 == 1.0000024
return (std::floor(a * 1024) == std::floor(b * 1024));
But this isn't great
I would go for option 4.
Say you consider any difference less than 0.001 to be insignificant, such that 1.00012 = 1.00011.
This does an additional subtraction and a sign removal, which is far cheaper (and more reliable) than bit shifts.
// Modified equality test for floats.
// Returns true if the ∂ is less than 1/10000.
// Works with 1.0000023 == 1.0000024
return abs(a - b) < 0.0001;
This boils down to your comment about calculating circularity, I am suggesting that you calculate the delta (difference) between two circles, rather than testing for equivalence. But that isn't exactly what you asked in the question...