I'm looking to set up a linear regression using 2D Gaussian basis functions. My input training variables cover a two dimensional space. Before applying the machine learning (Bayesian linear regression), I need to select parameters for the Gaussians - mean and variance and also decide how many basis functions to use.
I am currently spacing the means (of a preallocated number of basis Gaussians) evenly over a grid, and just assuming constant variance. This is obviously not the best approach. Any ideas on how to calculate these variables?