As per other's peoples answers (below mine) some code (with O(log n) ):
// A divide and conquer solution to find a peak element element
#include <stdio.h>
// A binary search based function that returns index of a peak element
int findPeakUtil(int arr[], int low, int high, int n)
{
// Fin index of middle element
int mid = low + (high - low)/2; /* (low + high)/2 */
// Compare middle element with its neighbours (if neighbours exist)
if ((mid == 0 || arr[mid-1] <= arr[mid]) &&
(mid == n-1 || arr[mid+1] <= arr[mid]))
return mid;
// If middle element is not peak and its left neighbor is greater than it
// then left half must have a peak element
else if (mid > 0 && arr[mid-1] > arr[mid])
return findPeakUtil(arr, low, (mid -1), n);
// If middle element is not peak and its right neighbor is greater than it
// then right half must have a peak element
else return findPeakUtil(arr, (mid + 1), high, n);
}
// A wrapper over recursive function findPeakUtil()
int findPeak(int arr[], int n)
{
return findPeakUtil(arr, 0, n-1, n);
}
/* Driver program to check above functions */
int main()
{
int arr[] = {1, 3, 20, 4, 1, 0};
int n = sizeof(arr)/sizeof(arr[0]);
printf("Index of a peak point is %d", findPeak(arr, n));
return 0;
}
Used this for MIT 6.006 OCW course may be check that out as well
http://courses.csail.mit.edu/6.006/spring11/rec/rec02.pdf