I am learning about SVM and ROC. As I know, people can usually use a ROC(receiver operating characteristic) curve to show classification ability of a SVM (Support Vector Machine). I am wondering if I can use the same concept to compare two subsets of features.
Assume I have two subsets of features, subset A and subset B. They are chosen from the same train data by 2 different features extraction methods, A and B. If I use these two subsets of features to train the same SVM by using the LIBSVM svmtrain() function and plot the ROC curves for both of them, can I compare their classification ability by their AUC values ? So if I have a higher AUC value for subsetA than subsetB, can I conclude that method A is better than method B ? Does it make any sense ?
Thank you very much,