I wanted to test a simple Cholesky code I wrote in C++. So I am generating a random lower-triangular L and multiplying by its transpose to generate A.
A = L * Lt;
But my code fails to factor A. So I tried this in Matlab:
N=200; L=tril(rand(N, N)); A=L*L'; [lc,p]=chol(A,'lower'); p
This outputs non-zero p which means Matlab also fails to factor A. I am guessing the randomness generates rank-deficient matrices. Am I right?
Update:
I forgot to mention that the following Matlab code seems to work as pointed out by Malife below:
N=200; L=rand(N, N); A=L*L'; [lc,p]=chol(A,'lower'); p
The difference is L is lower-triangular in the first code and not the second one. Why should that matter?
I also tried the following with scipy after reading A simple algorithm for generating positive-semidefinite matrices:
from scipy import random, linalg
A = random.rand(100, 100)
B = A*A.transpose()
linalg.cholesky(B)
But it errors out with:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/dist-packages/scipy/linalg/decomp_cholesky.py", line 66, in cholesky
c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=True)
File "/usr/lib/python2.7/dist-packages/scipy/linalg/decomp_cholesky.py", line 24, in _cholesky
raise LinAlgError("%d-th leading minor not positive definite" % info)
numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite
I don't understand why that's happening with scipy. Any ideas?
Thanks,
Nilesh.