I am working on a game that has destructible terrain (like in the game Worms, or Scorched Earth) and uses pixel perfect collision detection via masks.
The level is a single surface and how it works now is that I create a copy every frame, draw all sprites that need drawing on it, then blit the visible area to the display surface.
Is there any way to avoid copying the whole level surface every frame and still be able to use the pixel perfect collision tools found in pygame?
I tried blitting the level surface first, then blitting every sprite on the screen (with their blit coordinates adjusted by the camera, except for the player character whose coordinates are static), but in that case the collision detection system falls apart and I can't seem to be able to fix it.
UPDATE
I have managed to make it work the following way: When drawing the sprites, I convert their game world coordinates (which are basically coordinates relative to the origin of the level bitmap) to screen coordinates (coordinates relative to the camera, which is the currently visible area of the level).
During the collision detection phase I use the coordinates and bounding boxes that are positioned relative to the level surface; so just like above. The thing is that the camera's position is bound to the player's position which is not and should not have been a static value (I am really not sure how I managed to not realize that for so long).
While this fixes my problem, the answer below is a much more comprehensive look on how to improve performance in a situation like this. I am also open to suggestions to use other libraries that would make the ordeal easier, or faster. I have thought about pyglet and rabbyt, but it looks like the same problem exists there.