I have a setup where I need to extract data from Elasticsearch and store it on an Azure Blob. Now to get the data I am using Elasticsearch's _search and _scroll API. The indexes are pretty well designed and are formatted something like game1.*, game2.*, game3.* etc.
I've created a worker.py file which I stored in a folder called shared_code as Microsoft suggests and I have several Timer Trigger Functions which import and call worker.py. Due to the way ES was setup on our side I had to create a VNET and a static Outbound IP address which we've then whitelisted on ES. Conversely, the data is only available to be extracted from ES only on port 9200. So I've created an Azure Function App which has the connection setup and I am trying to create multiple Functions (game1-worker, game2-worker, game3-worker) to pull the data from ES running in parallel on minute 5. I've noticed if I add the FUNCTIONS_WORKER_PROCESS_COUNT = 1
setting then the functions will wait until the first triggered one finishes its task and then the second one triggers. If I don't add this app setting or increase the number, then once a function stopped because it finished working, it will try to start it again and then I get a OSError: [WinError 10048] Only one usage of each socket address (protocol/network address/port) is normally permitted
error. Is there a way I can make these run in parallel but not have the mentioned error?
Here is the code for the worker.py:
#!/usr/bin/env python
# coding: utf-8
# # Elasticsearch to Azure Microservice
import json, datetime, gzip, importlib, os, re, logging
from elasticsearch import Elasticsearch
import azure.storage.blob as azsb
import azure.identity as azi
import os
import tempfile
def batch(game_name, env='prod'):
# #### Global Variables
env = env.lower()
connection_string = os.getenv('conn_storage')
lowerFormat = game_name.lower().replace(" ","_")
azFormat = re.sub(r'[^0-9a-zA-Z]+', '-', game_name).lower()
storageContainerName = azFormat
stateStorageContainerName = "azure-webjobs-state"
minutesOffset = 5
tempFilePath = tempfile.gettempdir()
curFileName = f"{lowerFormat}_cursor.py"
curTempFilePath = os.path.join(tempFilePath,curFileName)
curBlobFilePath = f"cursors/{curFileName}"
esUrl = os.getenv('esUrl')
# #### Connections
es = Elasticsearch(
esUrl,
port=9200,
timeout=300)
def uploadJsonGzipBlob(filePathAndName, jsonBody):
blob = azsb.BlobClient.from_connection_string(
conn_str=connection_string,
container_name=storageContainerName,
blob_name=filePathAndName
)
blob.upload_blob(gzip.compress(bytes(json.dumps(jsonBody), encoding='utf-8')))
def getAndLoadCursor(filePathAndName):
# Get cursor from blob
blob = azsb.BlobClient.from_connection_string(
conn_str=os.getenv('AzureWebJobsStorage'),
container_name=stateStorageContainerName,
blob_name=filePathAndName
)
# Stream it to Temp file
with open(curTempFilePath, "wb") as f:
data = blob.download_blob()
data.readinto(f)
# Load it by path
spec = importlib.util.spec_from_file_location("cursor", curTempFilePath)
cur = importlib.util.module_from_spec(spec)
spec.loader.exec_module(cur)
return cur
def writeCursor(filePathAndName, body):
blob = azsb.BlobClient.from_connection_string(
conn_str=os.getenv('AzureWebJobsStorage'),
container_name=stateStorageContainerName,
blob_name=filePathAndName
)
blob.upload_blob(body, overwrite=True)
# Parameter and state settings
if os.getenv(f"{lowerFormat}_maxSizeMB") is None:
maxSizeMB = 10 # Default to 10 MB
else:
maxSizeMB = int(os.getenv(f"{lowerFormat}_maxSizeMB"))
if os.getenv(f"{lowerFormat}_maxProcessTimeSeconds") is None:
maxProcessTimeSeconds = 300 # Default to 300 seconds
else:
maxProcessTimeSeconds = int(os.getenv(f"{lowerFormat}_maxProcessTimeSeconds"))
try:
cur = getAndLoadCursor(curBlobFilePath)
except Exception as e:
dtStr = f"{datetime.datetime.utcnow():%Y/%m/%d %H:%M:00}"
writeCursor(curBlobFilePath, f"# Please use format YYYY/MM/DD HH24:MI:SS\nlastPolled = '{dtStr}'")
logging.info(f"No cursor file. Generated {curFileName} file with date {dtStr}")
return 0
# # Scrolling and Batching Engine
lastRowDateOffset = cur.lastPolled
nrFilesThisInstance = 0
while 1:
# Offset the current time by -5 minutes to account for the 2-3 min delay in Elasticsearch
initTime = datetime.datetime.utcnow()
## Filter lt (less than) endDate to avoid infinite loops.
## Filter lt manually when compiling historical based on
endDate = initTime-datetime.timedelta(minutes=minutesOffset)
endDate = f"{endDate:%Y/%m/%d %H:%M:%S}"
doc = {
"query": {
"range": {
"baseCtx.date": {
"gt": lastRowDateOffset,
"lt": endDate
}
}
}
}
Index = lowerFormat + ".*"
if env == 'dev': Index = 'dev.' + Index
if nrFilesThisInstance == 0:
page = es.search(
index = Index,
sort = "baseCtx.date:asc",
scroll = "2m",
size = 10000,
body = doc
)
else:
page = es.scroll(scroll_id = sid, scroll = "10m")
pageSize = len(page["hits"]["hits"])
data = page["hits"]["hits"]
sid = page["_scroll_id"]
totalSize = page["hits"]["total"]
print(f"Total Size: {totalSize}")
cnt = 0
# totalSize might be flawed as it returns at times an integer > 0 but array is empty
# To overcome this, I've added the below check for the array size instead
if pageSize == 0: break
while 1:
cnt += 1
page = es.scroll(scroll_id = sid, scroll = "10m")
pageSize = len(page["hits"]["hits"])
sid = page["_scroll_id"]
data += page["hits"]["hits"]
sizeMB = len(gzip.compress(bytes(json.dumps(data), encoding='utf-8'))) / (1024**2)
loopTime = datetime.datetime.utcnow()
processTimeSeconds = (loopTime-initTime).seconds
print(f"{cnt} Results pulled: {pageSize} -- Cumulative Results: {len(data)} -- Gzip Size MB: {sizeMB} -- processTimeSeconds: {processTimeSeconds} -- pageSize: {pageSize} -- startDate: {lastRowDateOffset} -- endDate: {endDate}")
if sizeMB > maxSizeMB: break
if processTimeSeconds > maxProcessTimeSeconds: break
if pageSize < 10000: break
lastRowDateOffset = max([x['_source']['baseCtx']['date'] for x in data])
lastRowDateOffsetDT = datetime.datetime.strptime(lastRowDateOffset, '%Y/%m/%d %H:%M:%S')
outFile = f"elasticsearch/live/{lastRowDateOffsetDT:%Y/%m/%d/%H}/{lowerFormat}_live_{lastRowDateOffsetDT:%Y%m%d%H%M%S}.json.gz"
uploadJsonGzipBlob(outFile, data)
writeCursor(curBlobFilePath, f"# Please use format YYYY/MM/DD HH24:MI:SS\nlastPolled = '{lastRowDateOffset}'")
nrFilesThisInstance += 1
logging.info(f"File compiled: {outFile} -- {sizeMB} MB\n")
# If the while loop ran for more than maxProcessTimeSeconds then end it
if processTimeSeconds > maxProcessTimeSeconds: break
if pageSize < 10000: break
logging.info(f"Closing Connection to {esUrl}")
es.close()
return 0
And these are 2 of the timing triggers I am calling:
game1-worker
import logging
import datetime
import azure.functions as func
#from shared_code import worker
import importlib
def main(mytimer: func.TimerRequest) -> None:
utc_timestamp = datetime.datetime.utcnow().replace(
tzinfo=datetime.timezone.utc).isoformat()
if mytimer.past_due:
logging.info('The timer is past due!')
# Load a new instance of worker.py
spec = importlib.util.spec_from_file_location("worker", "shared_code/worker.py")
worker = importlib.util.module_from_spec(spec)
spec.loader.exec_module(worker)
worker.batch('game1name')
logging.info('Python timer trigger function ran at %s', utc_timestamp)
game2-worker
import logging
import datetime
import azure.functions as func
#from shared_code import worker
import importlib
def main(mytimer: func.TimerRequest) -> None:
utc_timestamp = datetime.datetime.utcnow().replace(
tzinfo=datetime.timezone.utc).isoformat()
if mytimer.past_due:
logging.info('The timer is past due!')
# Load a new instance of worker.py
spec = importlib.util.spec_from_file_location("worker", "shared_code/worker.py")
worker = importlib.util.module_from_spec(spec)
spec.loader.exec_module(worker)
worker.batch('game2name')
logging.info('Python timer trigger function ran at %s', utc_timestamp)