Here is working code for David Eisenstat's solution.
To understand the implementation, I think it helps to go through the math first.
As a reminder, there are n
lists, each with m
options. (In the motivating example at the bottom of the question, each list represents a method for solving the problem, and you are given m-1
seconds to solve the problem. Each list is such that list[index]
gives the chance of solving the problem with that method if the method is run for index
seconds.)
We let the lists be stored in a matrix called d
(named data
in the code), where each row in the matrix is a list. (And thus each column represents an index, or, if following the motivating example, an amount of time.)
The probability of the coin landing heads, given that we chose index j*
for list i
, is computed as

We would like to maximize this.
(To explain the stats behind this equation, we're computing 1 minus the probability that the coin doesn't land on heads. The probability that the coin doesn't land on heads is the probability that each flip doesn't land on heads. The probability that a single flip doesn't land on heads is just 1 minus the probability that does land on heads. And the probability it does land on heads is the number we've chosen, d[i][j*]
. Thus, the total probability that all the flips land on tails is just the product of the probability that each one lands on tails. And then the probability that the coin lands on heads is just 1 minus the probability that all the flips land on tails.)
Which, as David pointed out, is the same as minimizing:

Which is the same as minimizing:

Which is equivalent to:

Then, since this is linear sum, we can turn it into an integer program.
We'll be minimizing:

This lets the computer choose the indexes by allowing it to create an n
by m
matrix of 1s and 0s called x
where the 1s pick out particular indexes. We'll then define rules so that it doesn't pick out invalid sets of indexes.
The first rule is that you have to pick out an index for each list:

The second rule is that you have to respect the constraint that the indexes chosen must sum to m or less:

And that's it! Then we can just tell the computer to minimize that sum according to those rules. It will spit out an x
matrix with a single 1
on each row to tell us which index it has picked for the list on that row.
In code (using the motivating example), this is implemented as:
'''
Requirements:
cvxopt==1.2.6
cvxpy==1.1.10
ecos==2.0.7.post1
numpy==1.20.1
osqp==0.6.2.post0
qdldl==0.1.5.post0
scipy==1.6.1
scs==2.1.2
'''
import math
import cvxpy as cp
import numpy as np
# number of methods
n = 3
# if you have 10 seconds, there are 11 options for each method (0 seconds, 1 second, ..., 10 seconds)
m = 11
# method A has 30% chance of working if run for at least 3 seconds
# equivalent to [0, 0, 0, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
A_list = [0, 0, 0] + [0.3] * (m - 3)
# method B has 30% chance of working if run for at least 3 seconds
# equivalent to [0, 0, 0, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
B_list = [0, 0, 0] + [0.3] * (m - 3)
# method C has 40% chance of working if run for 4 seconds, 30% otherwise
# equivalent to [0.3, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4]
C_list = [0.3, 0.3, 0.3, 0.3] + [0.4] * (m - 4)
data = [A_list, B_list, C_list]
# do the logarithm
log_data = []
for row in data:
log_row = []
for col in row:
# deal with domain exception
if col == 1:
new_col = float('-inf')
else:
new_col = math.log(1 - col)
log_row.append(new_col)
log_data.append(log_row)
log_data = np.array(log_data)
x = cp.Variable((n, m), boolean=True)
objective = cp.Minimize(cp.sum(cp.multiply(log_data, x)))
# the current solver doesn't work with equalities, so each equality must be split into two inequalities.
# see https://github.com/cvxgrp/cvxpy/issues/1112
one_choice_per_method_constraint = [cp.sum(x[i]) <= 1 for i in range(n)] + [cp.sum(x[i]) >= 1 for i in range(n)]
# constrain the solution to not use more time than is allowed
# note that the time allowed is (m - 1), not m, because time is 1-indexed and the lists are 0-indexed
js = np.tile(np.array(list(range(m))), (n, 1))
time_constraint = [cp.sum(cp.multiply(js, x)) <= m - 1, cp.sum(cp.multiply(js, x)) >= m - 1]
constraints = one_choice_per_method_constraint + time_constraint
prob = cp.Problem(objective, constraints)
result = prob.solve()
def compute_probability(data, choices):
# compute 1 - ((1 - p1) * (1 - p2) * ...)
return 1 - np.prod(np.add(1, -np.multiply(data, choices)))
print("Choices:")
print(x.value)
'''
Choices:
[[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]]
'''
print("Chance of success:")
print(compute_probability(data, x.value))
'''
Chance of success:
0.7060000000000001
'''
And there we have it! The computer has correctly determined that running method A for 3 seconds, method B for 3 seconds, and method C for 4 seconds is optimal. (Remember that the x
matrix is 0-indexed, while the times are 1-indexed.)
Thank you, David, for the suggestion!