Couldn't find a solution on the web for my problem. I am trying to insert this pandas df to a Postgresql table using SQLAlchemy
- Pandas 0.24.2
- sqlalchemy 1.3.3
- python 3.7
Relevant part of my code is below:
engine = create_engine('postgresql://user:pass@host:5432/db')
file = open('GameRoundMessageBlackjackSample.json', 'r', encoding='utf-8')
json_dict = json.load(file)
df = json_normalize(json_dict, record_path='cards', meta=['bet', 'dealerId', 'dealerName', 'gameOutcome', 'gameRoundDuration', 'gameRoundId', 'gameType', 'tableId', 'win'])
df = df[['win', 'betAmount', 'bets']]
df.to_sql('test_netent_data', engine, if_exists='append')
When I try to load this table to sql without the column 'bets' everyting works as expected. But when I include it i get the following error:
sqlalchemy.exc.ProgrammingError: (psycopg2.ProgrammingError) can't adapt
type 'dict'
[SQL: INSERT INTO test_netent_data (index, win, "betAmount", bets) VALUES (%(index)s, %(win)s, %(betAmount)s, %(bets)s)]
[parameters: ({'index': 0, 'win': '2000.00', 'betAmount': '1212112', 'bets': [{'name': '1', 'amount': '1212112'}]}, {'index': 1, 'win': '2000.00', 'betAmount': '1212000', 'bets': [{'name': '1', 'amount': '1212000'}]}, {'index': 2, 'win': '2000.00', 'betAmount': '1212112', 'bets': [{'name': '1', 'amount': '1212112'}]}, {'index': 3, 'win': '2000.00', 'betAmount': '1212000', 'bets': [{'name': '1', 'amount': '1212000'}]}, {'index': 4, 'win': '2000.00', 'betAmount': '1212112', 'bets': [{'name': '1', 'amount': '1212112'}]}, {'index': 5, 'win': '2000.00', 'betAmount': '1212000', 'bets': [{'name': '1', 'amount': '1212000'}]}, {'index': 6, 'win': '2000.00', 'betAmount': '1212112', 'bets': [{'name': '1', 'amount': '1212112'}]}, {'index': 7, 'win': '2000.00', 'betAmount': '1212000', 'bets': [{'name': '1', 'amount': '1212000'}]})]
(Background on this error at: http://sqlalche.me/e/f405)
I have checked the type of this column but it is (type object) no different from other columns. Ive also tried to convert it to string and got a bunch of other errors. I believe there should be a simple solution which I can't get my head around.