The question: Is it normal / usual / professional to use the past of the labels as features? I could not find anything reliable on this, although it is a basic question.
Edited: Please mind, this is not a time-series question, I have deleted the time-series tag now and I changed the question. This question is about features that change regularly over time, yes! But we do not create a time-series from this, as there are many other features as well which are not like the label and are also important features in the model. Now please think of using past labels as normal features without a time-series approach.
I try to predict a certain month of data that is available monthly, thus a time-series, but I am not using it as a time-series, it is just monthly avaiable data of various different features.
It is a classification model, and now I want to predict a label column of a selected month of that time-series. The previous months before the selected label month are now the point of the question.
I do not want to just drop the past months of the label just because they are "almost" a label (or in other words: they were just the label columns of the preceding models in time). I know the past of the label, why not considering it as features as well?
My predictions are of course much better when adding the past labels of the time-series of labels to the features. This is logical as the labels usually do not change so much from one month to the other and thus can be predicted very well if you have fed the data with the past of the label. It would be strange not to use such "past labels" as features, as any simple time-series regression would then be better than the ml model.
Example: Let's say I predict the IQ test result of a person, and I use her past IQ test results as features in addition to other normal "non-label" features like age, education aso. I use the first 11 months of "past labels" of a year as features in addition to my normal "non-label" features. I predict the label of the 12th month. Predicting the label of the 12th month works much better if you add the past of the labels to the features - obviously. This is because the historical labels, if there are any, are of course better indicators of the final outcome than normal columns like age and education.
Possibly related p.s.:
p.s.1: In auto-regressive models, the past of the dependent variable can well be used as independent variable, see: https://de.wikipedia.org/wiki/Regressionsanalyse
p.s.2: In ML you can perhaps just try any features and take what gives you the best results, a bit like >Good question, try them [feature selection methods] all and see what works best< in https://machinelearningmastery.com/feature-selection-in-python-with-scikit-learn/ >If the features are relevant to the outcome, the model will figure out how to use them. Or most models will.< The same is said in Does the feature selection matter for learning algorithm with regularization?
p.s.3: Also probably relevant is the problem of multicollinearity: https://statisticsbyjim.com/regression/multicollinearity-in-regression-analysis/ though multicollinearity is said to be no issue for the prediction: >Multicollinearity affects the coefficients and p-values, but it does not influence the predictions, precision of the predictions, and the goodness-of-fit statistics. If your primary goal is to make predictions, and you don’t need to understand the role of each independent variable, you don’t need to reduce severe multicollinearity.