I'm given an array and a list of queries of type L R which mean find the smallest absolute difference between any two array elements such that their indices are between L and R inclusive (Here the starting index of array is at 1 instead of at 0)
For example take the array a with elements 2 1 8 5 11 then the query 1-3 which would be (2 1 8) the answer would be 1=2-1, or the query 2-4 (1 8 5) where the answer would be 3=8-5
Now this is easy if you have to look at one interval you sort the interval and then compare i-th element with i+1-th and store the minimum difference for each i.
The problem is that I'll have a lot of intervals to check I have to keep the original array intact.
What I've done is I constructed a new array b with indices from the first one such that a[b[i]] <= a[b[j]] for i <= j. Now for each query I loop through the whole array and look if b[j] is between L and R if it is compare its absolute difference to the first next element that is also between L and R keep the minimum and then do the same for that element until you get to the end.
This is inefficient because for each query I have to check all elements of the array especially if the query is small compared to the size of array. I'm looking for a time efficient approach.
EDIT: The numbers don't have to be consecutive, perhaps I gave a bad array as an example, What I've meant for example if it's 1 5 2 then the smallest difference is 1=2-1. In a sorted array the smallest difference is guaranteed to be between two consecutive elements, that's why I've thought of sorting