I have the following integral
x,x1,x2,t=symbols('x x1 x2 t')
f=t*x1*x2*(x-t)**(-Rational('0.5'))
integrate(f,t).simplify()
The result of this is a piecewise function
Piecewise((2*sqrt(x)*x1*x2*(-I*t**2*sqrt((t - x)/x) - I*t*x*sqrt((t - x)/x) + 2*t*x + 2*I*x**2*sqrt((t - x)/x) - 2*x**2)/(3*(t - x)), Abs(t/x) > 1), (2*sqrt(x)*x1*x2*(-t**2*sqrt((-t + x)/x) - t*x*sqrt((-t + x)/x) + 2*t*x + 2*x**2*sqrt((-t + x)/x) - 2*x**2)/(3*(t - x)), True))
I want to ignore the first case, so the solution would be to do
integrate(f,t,conds='none').simplify()
But this doesn't change the output, which is still
Piecewise((2*sqrt(x)*x1*x2*(-I*t**2*sqrt((t - x)/x) - I*t*x*sqrt((t - x)/x) + 2*t*x + 2*I*x**2*sqrt((t - x)/x) - 2*x**2)/(3*(t - x)), Abs(t/x) > 1), (2*sqrt(x)*x1*x2*(-t**2*sqrt((-t + x)/x) - t*x*sqrt((-t + x)/x) + 2*t*x + 2*x**2*sqrt((-t + x)/x) - 2*x**2)/(3*(t - x)), True))
How can I ignore the conditions then?