Is there any easier way to set up the dataloader, because input and target data is the same in case of an autoencoder and to load the data during training? The DataLoader always requires two inputs.
Currently I define my dataloader like this:
X_train = rnd.random((300,100))
X_val = rnd.random((75,100))
train = data_utils.TensorDataset(torch.from_numpy(X_train).float(), torch.from_numpy(X_train).float())
val = data_utils.TensorDataset(torch.from_numpy(X_val).float(), torch.from_numpy(X_val).float())
train_loader= data_utils.DataLoader(train, batch_size=1)
val_loader = data_utils.DataLoader(val, batch_size=1)
and train like this:
for epoch in range(50):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target).detach()
optimizer.zero_grad()
output = model(data, x)
loss = criterion(output, target)