76

I have the following sample DataFrame:

a    | b    | c   | 

1    | 2    | 4   |
0    | null | null| 
null | 3    | 4   |

And I want to replace null values only in the first 2 columns - Column "a" and "b":

a    | b    | c   | 

1    | 2    | 4   |
0    | 0    | null| 
0    | 3    | 4   |

Here is the code to create sample dataframe:

rdd = sc.parallelize([(1,2,4), (0,None,None), (None,3,4)])
df2 = sqlContext.createDataFrame(rdd, ["a", "b", "c"])

I know how to replace all null values using:

df2 = df2.fillna(0)

And when I try this, I lose the third column:

df2 = df2.select(df2.columns[0:1]).fillna(0)
Rakesh Adhikesavan
  • 11,966
  • 18
  • 51
  • 76

2 Answers2

142
df.fillna(0, subset=['a', 'b'])

There is a parameter named subset to choose the columns unless your spark version is lower than 1.3.1

Endre Both
  • 5,540
  • 1
  • 26
  • 31
Zhang Tong
  • 4,569
  • 3
  • 19
  • 38
73

Use a dictionary to fill values of certain columns:

df.fillna( { 'a':0, 'b':0 } )
scottlittle
  • 18,866
  • 8
  • 51
  • 70
  • 1
    This is a better answer because it does not matter wether it is one or many values being filled in. – Chris Marotta Jun 17 '20 at 19:25
  • @ChrisMarotta Does the values type of all selected columns have to be of same type? Could it also be possible: `df.fillna( { 'a':0, 'b':'2022-12-01' } )` where column a is of numeric type, and b is of date type? – nam Jun 05 '22 at 23:09
  • 1
    @nam, I suggest you fire up a pyspark terminal and find out – Chris Marotta Jun 16 '22 at 16:36
  • the behavious that @nam asked for is possible. see the third example in https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.DataFrameNaFunctions.fill.html – Naveen Reddy Marthala Jul 26 '23 at 10:15